Peritectic reaction of olivine in the diamond-forming system carbonate-silicate-(C-O-H) at 6 GPa
- Authors: Kuzyura A.V.1, Spivak A.V.1, Litvin Y.A.1
-
Affiliations:
- D.S. Korzhinskii Institute of Experimental Mineralogy of the RAS
- Issue: Vol 69, No 1 (2024)
- Pages: 36-50
- Section: Articles
- URL: https://journals.rcsi.science/0016-7525/article/view/259967
- DOI: https://doi.org/10.31857/S0016752524010034
- EDN: https://elibrary.ru/MVGHZF
- ID: 259967
Cite item
Abstract
Influence of the supercritical C-O-H-fluid (7.5 wt.%) onto melting phase relations of the multicomponent multiphase diamond-forming system olivine-jadeite-diopside-(Mg-Fe-Ca-Na-carbonates)-(C-O-H) in experiments at 6 GPa and 700–1200 °C (the upper mantle conditions) has been studied. The peritectic reaction of olivine and jadeite-bearing melt with garnet formation has been retained as a key mechanism of the ultrabasic-basic evolution of diamond-forming melts. The CO2-fluid and silicate components react forming carbonate phases. The H2O-fluid together with carbonates has essentially lowered temperatures of the liquidus and solidus boundaries. The phase of supercritical water fluid and water-bearing carbonate nesquehonite (Nes) MgCO3·3H2O were identified with the Raman-spectroscopy method after crystallization of the completely mixed silicate-carbonate-(C-O-H-fluid) melt.
Full Text

About the authors
A. V. Kuzyura
D.S. Korzhinskii Institute of Experimental Mineralogy of the RAS
Author for correspondence.
Email: shushkanova@iem.ac.ru
Russian Federation, Academician Osipyan str., 4, Chernogolovka, Moscow district, 142432
A. V. Spivak
D.S. Korzhinskii Institute of Experimental Mineralogy of the RAS
Email: shushkanova@iem.ac.ru
Russian Federation, Academician Osipyan str., 4, Chernogolovka, Moscow district, 142432
Yu. A. Litvin
D.S. Korzhinskii Institute of Experimental Mineralogy of the RAS
Email: shushkanova@iem.ac.ru
Russian Federation, Academician Osipyan str., 4, Chernogolovka, Moscow district, 142432
References
- Zaharov A. M. (1964) State diagrams of quadruple systems. M.: Metallurgiya, 240 pp.
- Kadik A. A. (2003) Mantle-derived reduced fluids: relationship to the chemical differentiation of planetary matter. Geochem. Int., 41 (9), 844–855.
- Litvin Ju.A. (1991) Physical and chemical studies of the melting of the Earth's deep matter. M.: Nauka, 312 pp.
- Litvin Yu.A., Spivak A. V., Kuzyura A. V. (2016) Fundamentals of mantle-carbonatite concept of diamond genesis. Geochim. Int., 50 (10), 839–857. doi: 10.1134/S0016702916100086
- Litvin Yu.A., Kuzyura A. V., Limanov E. V. (2019) The role of garnetization of olivine in the olivine-diopside-jadeite system in the ultramafic-mafic evolution of upper-mantle magmatism (experiment at 6 GPa). Geochim. Int., 57 (10), 1045–1065. doi: 10.1134/S0016702919100070
- Litvin Yu.A., Kuzyura A. V. (2021) Peritectic reaction of olivine in the olivine-jadeite-Diopside-garnet-(C-O-H) system at 6 GPa as the key mechanism of the magmatic evolution in the upper mantle. Geochim. Int., 59 (9), 813–839. doi: 10.1134/S0016702921080048
- Litvin Yu.A., Shushkanova A. V., Bovkun A. V., Varlamov D. A., Limanov E. V., Garanin V. K. (2020) Genesis of diamondiferous rocks from upper-mantle xenoliths in kimberlite. Geochem. Int., 58 (3), 245–270. doi: 10.1134/S0016702920030088
- Marakushev A. A. (1984) Peridotite nodules in kimberlites as indicators of the deep structure of the lithosphere. Reports of Soviet geologists at the XXYII session of the International Geological Congress. Petrology. M.: Nauka, pp. 153–160 [in Russian].
- Palatnik L. S., Landau A. I. (1961) Phase equilibria of multicomponent systems. Kharkov, HGU publication, 406 pp.
- Ragozin A. L., Karimova A. A., Litasov K. D., Zedgenizov D. A., V. S. Shackii V. S. (2014) Water content in minerals of mantle xenoliths from kimberlites of the Udachnaya volcanic pipe (Yakutia). Geology and geophysics, 55 (4), 549–567 [in Russian]. doi: 10.15372/GiG20140402
- Sobolev N. V. (1974) Deep inclusions in kimberlites and the problem of upper mantle composition. Novosibirsk, Nauka, 264 pp. [in Russian]
- Tomilenko A. A., Chepurov A. I., Palyanov Ju.N., Pohilenko N. P., Shebanin A. P. (1997) Volatile components in the upper mantle from fluid inclusion studies. Geology and geophysics, 38 (1), 276–285 [in Russian].
- Abramson E. H., Bollengier O., Brown J. M. (2017) The water-carbon dioxide miscibility surface to 450°C and 7 GPa. Amer. J. Sci., 317 (9), 967–989. doi: 10.2475/09.2017.01
- Green D. H., Falloon T. J., Taylor W. R. (1987) Mantle-derived magmas – role of variable source peridotite and variable C-H-O fluid compositions. Magmatic Processes: Physicochemical Principles. A volume in honor of Hatten S. Yoder, Jr. (Mysen B. O., Ed.). The Geochemical Society Special Publication No. 1. University Park: Pennsilvania, pp. 139–154.
- Dawson J. B. (1980) Kimberlites and their Xenoliths. Berlin, Springer-Verlag. XII, 252 pp.
- Hosoya T., Kubo T., Ohtani E., Sano A., Funakoshi K. (2005) Water controls the fields of metastable olivine in cold subducting slabs. Geophys. Res. Lett., 321 (17) L17305 doi: 10.1029/2005GL023398
- Izraeli E. S., Harris J. H., Navon O. (2001) Brine inclusions in diamonds: a new upper mantle fluid. Earth Planet. Sci. Lett., 187 (3–4), 323–332. doi: 10.1016/S0012-821X(01)00291-6
- Koziol A. M., Newton R. C. (1998) Experimental determination of the reaction: Magnesite + enstatite = forsterite + CO2 in the range 6–25 kbar and 700–1100°C. Am. Mineral., 83, 213–219. doi: 10.2138/am-1998-3-403
- Litvin Yu.A. (2017) Genesis of diamonds and associated phases. Springer Mineralogy, 137 pp.
- Logvinova A. M., Wirth R., Fedorova E. N., Sobolev N. V. (2008) Nanometre-sized mineral and fluid inclusions in cloudy Siberian diamonds: new insight on diamond formation. Eur. J. Mineral., 20 (3), 317–331. doi: 10.1127/0935-1221/2008/0020-1815
- Navon O., Hutcheon I. D., Rossman G. R., Wasserburg G. J. (1988) Mantle derived fluids in diamond micro-inclusions. Nature, 355 (6193), 784–789. doi: 10.1038/335784a0
- Ohtani E., Litasov K. D. (2006) The Effect of Water on Mantle Phase Transitions. Reviews in Mineralogy & Geochemistry, 62 (1), 397–420. doi: 10.2138/rmg.2006.62.17
- Rhines F. N. (1956) Phase diagrams in metallurgy: their developments and application. N. Y.-Toronto-L.: McGraw-Hill Book Company, 348 pp.
- Schrauder M., Navon O. (1994) Hydrous and carbonatitic mantle fluids in fibrous diamonds from Jwaneng, Botswana. Geochim. Cosmochim. Acta, 58 (2), 761–771. doi: 10.1016/0016-7037(94)90504-5
- Weiss Ya., Kessel R., Griffin W. L., Kiflavi I., Kleim-BenDavid O., Harris J. W., Bell D. R., Navon O. (2009) A new model for the evolution of diamond-forming fluids: Evidence from microinclusion-bearing diamonds from Kankan, Guinea. Lithos, 112 (1–3), 660–674. doi: 10.1016/j.lithos.2009.05.038
- Zedgenizov D. A., Rege S., Griffin W. L., Kagi H., Shatsky V. S. (2007) Composition of trapped fluids in cuboid diamonds from the Udachnaya kimberlite: LAM–ICPMS analysis. Chem. Geol., 240 (1–2), 151–162. doi: 10.1016/j.chemgeo.2007.02.003
Supplementary files
