Major, volatile, ore, and trace elements in magmatic melts from main geodynamic settings. II. Similarity and differences
- Authors: Naumov V.B.1, Girnis A.V.2, Dorofeeva V.A.1
-
Affiliations:
- Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences
- Institute of Geology of Ore Deposits, Petrography, Mineralogy, and Geochemystry, Russian Academy of Sciences
- Issue: Vol 69, No 1 (2024)
- Pages: 21-35
- Section: Articles
- URL: https://journals.rcsi.science/0016-7525/article/view/259963
- DOI: https://doi.org/10.31857/S0016752524010026
- EDN: https://elibrary.ru/MVSCRI
- ID: 259963
Cite item
Abstract
Based on the mean contents of elements and their standard deviations estimated in the first part of this research project (Naumov et al, 2022), we compared in detail the distinguished geodynamic settings. In order to compare the compositions of mafic melts, a correction to take into account changes related to the fractionation of main minerals was introduced. The use of numerical criteria made it possible to determine the sequence of elements by the degree of coherence during melting and crystallization of the main magmatic melts. Within this sequence, a regular variation in elemental contents normalized to the average composition of oceanic island melts was established. The melts of mid-ocean ridges show a monotonous increase in normalized contents from the most incompatible (Cs, Ba, U, La, etc.) to compatible elements (Sc, Ni, Cr). The settings of convergent plate boundaries show relative enrichment in the most incompatible elements and significant negative Ta-Nb anomalies relative to neighboring elements. The magmas of continental rifts show the highest enrichment in the most incompatible elements, as well as Pb, Li, and some other elements. Indicator element ratios showing significant variations between the settings were distinguished for mafic melts. Some element ratios are almost identical (within observed variations) in mafic melts from all the settings. The mean element ratios in mafic, intermediate, and silicic magmas show three types of behavior. Some ratios (including the canonic ratios Nb/Ta, Zr/Hf, etc.) in intermediate and silicic magmas are inherited from the composition of mafic melts. Some ratios show irregular changes from mafic to silicic melts (Sr/Cr, F/Th, etc.). There are ratios that changes monotonously and significantly in the sequence from mafic to silicic melts (Ni/Yb, Lu/P, etc.). The variations of element ratios are related to the crystallization differentiation of melts and contributions of geochemically contrasting reservoirs.
Full Text

About the authors
V. B. Naumov
Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences
Author for correspondence.
Email: naumov@geokhi.ru
Russian Federation, Kosygina, 19, Moscow, 119991
A. V. Girnis
Institute of Geology of Ore Deposits, Petrography, Mineralogy, and Geochemystry, Russian Academy of Sciences
Email: girnis@igem.ru
Russian Federation, Starominetny, 35, Moscow, 119017
V. A. Dorofeeva
Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences
Email: naumov@geokhi.ru
Russian Federation, Kosygina, 19, Moscow, 119991
References
- Naumov V. B., Girnis A. V., Dorofeeva V. A., and Kovalenker V. A. Volatile, Trace, and Ore Elements in Magmatic Melts and Natural Fluids: Evidence from Mineral-Hosted Inclusions. II. Effect of Crystallization Differentiation on the Concentrations of Ore Elements. Geochemistry International., 60, 537–550 (2022). doi: 10.1134/S0016702922060040
- Naumov V. B., Dorofeeva V. A., Girnis A. V. Petrogenic, volatile, ore and rare elements in magmatic melts of the Earth's major geodynamic settings. I. Average contents. Geohimiya, 68, No. 12, 1253–1272 (2023) [in Russian]. doi: 10.31857/S001675252312004X
- Arevalo Jr. R., McDonough W. F. Chemical variations and regional diversity observed in MORB. Chem. Geol. 271, 70–85 (2010). doi: 10.1016/j.chemgeo.2009.12.013
- Baier J., Audetat A., Keppler H. The origin of the negative niobium tantalum anomaly in subduction zone magmas. Earth Planet. Sci. Lett. 267, 290–300 (2008). doi: 10.1016/j.epsl.2007.11.032
- Baker M. B., Hirschmann M. M., Ghiorso M. S., Stolper E. M.Compositions of near-solidus peridotite melts from experiments and thermodynamic calculations. Nature, 375, 308–311 (1995).
- Barr J. A., Grove T. L. Experimental petrology of the Apollo 15 group A green glasses: Melting primordial lunar mantle and magma ocean cumulate assimilation. Geochim. Cosmochim. Acta, 106, 216–230 (2013). doi: 10.1016/j.gca.2012.12.035
- Bulatov V. K., Girnis A. V., Brey G. P. Primary magmas of mid-ocean ridges: Analysis of experimental modeling. Geochemistry Int., 38, Suppl. 1, S108-S122 (2000).
- Bulatov V. K., Girnis A. V., Brey G. P. Experimental melting of a modally heterogeneous mantle. Mineral. Petrol. 75, 131–152 (2002). doi: 10.1007/s007100200021
- Chalot-Prat F., Falloon T. J., Green D. H., Hibberson W. O.An experimental study of liquid compositions in equilibrium with plagioclase spinel lherzolite at low pressures (0.75 GPa). J. Petrol., 51, 2349–2376 (2010). doi: 10.1093/petrology/egq060
- Chalot-Prat F., Falloon T. J., Green D. H., Hibberson W. O.Melting of plagioclase + spinel lherzolite at low pressures (0.5 GPa): An experimental approach to the evolution of basaltic melt during mantle refertilisation at shallow depths. Lithos, 172–173, 61–80 (2013). doi: 10.1016/j.lithos.2013.03.012
- Collinet M., Medard E., Charlier B., Vander Auwera J., Grove T. L. Melting of the primitive martian mantle at 0.5–2.2 GPa and the origin of basalts and alkaline rocks on Mars. Earth Planet.
- Sci. Lett., 427, 83–94 (2015). doi: 10.1016/j.epsl.2015.06.056
- Davis F. A., Hirschmann M. M. The effects of K2O on the compositions of near-solidus melts of garnet peridotite at 3 GPa and the origin of basalts from enriched mantle. Contrib. Mineral. Petrol., 166, 1029–1046 (2013). doi: 10.1007/s00410-013-0907-0
- Davis F. A., Hirschmann M. M., Humayun M. The composition of the incipient partial melt of garnet peridotite at 3 GPa and the origin of OIB. Earth Planet. Sci. Lett., 308, 380–390 (2011). doi: 10.1016/j.epsl.2011.06.008
- Davis F. A., Humayun M., Hirschmann M. M., Cooper R. S. Experimentally determined mineral/melt partitioning of first-row transition elements (FRTE) during partial melting of peridotite at 3 GPa. Geochim. Cosmochim. Acta, 104, 232–260 (2013). doi: 10.1016/j.gca.2012.11.009
- Draper D. S., Johnston A. D. Anhydrous PT phase relations of an Aleutian high-MgO basalt: an investigation of the role of olivine-liquid reaction in the generation of arc high-alumina basalts. Contrib. Mineral. Petrol., 112, 501–519 (1992). doi: 10.1007/BF00310781
- Elliott T., Plank T., Zindler A., White W., Bourdon B. Element transport from slab to volcanic front at the Mariana arc. J. Geophys. Res., 102 (B7), 14991–15019 (1997). doi: 10.1029/97JB00788
- Elthon D., Scarfe C. M. High-pressure phase equilibria of a high-magnesia basalt and the genesis of primary oceanic basalts. Am. Mineral., 69, 1–15 (1984).
- Frey F. A., Green D. H., Roy S. D. Integrated model of basalt petrogenesis: a study of quartz tholeiites to olivine melilites from southeast Australia utilizing geochemical and experimental petrologic data. J. Petrol., 19, 463–513 (1978).
- Green T. H., Pearson N. J. An experimental study of Nb and Ta partitioning between Ti-rich minerals and silicate liquids at high pressure and temperature. Geochim. Cosmochim. Acta, 51, 55–62 (1987). doi: 10.1016/0016-7037(87)90006-8
- Hoernle K., Tilton G., Le Bas M. J., Duggen S., Garbe-Schonberg D. Geochemistry of oceanic carbonatites compared with continental carbonatites: mantle recycling of oceanic crustal carbonate. Contrib. Mineral. Petrol., 142, 520–542 (2002). doi: 10.1007/s004100100308
- Hofmann A., White W. Mantle plumes from ancient oceanic crust. Earth Planet. Sci. Lett., 57 (2), 421–436 (1982). doi: 10.1016/0012-821X(82)90161-3
- Hofmann A. W. Chemical differentiation of the Earth: the relationship between mantle, continental crust, and oceanic crust. Earth Planet. Sci. Lett., 90, 297–314 (1988). doi: 10.1016/0012-821X(88)90132-X
- Hofmann A. W. Mantle geochemistry: the message from oceanic volcanism. Nature, 385, 219–229 (1997). doi: 10.1038/385219a0
- Keppler H. Constraints from partitioning experiments on the composition of subduction-zone fluids. Nature, 380, 237–240 (1996). doi: 10.1038/380237a0
- Kessel R., Schmidt M. W., Ulmer P. and Pettke T. Trace element signature of subduction-zone fluids, melts and supercritical liquids at 120–180 km depth. Nature, 437, 724–727 (2005). doi: 10.1038/nature03971
- Lambart S., Laporte D., Schiano P. An experimental study of focused magma transport and basalt–peridotite interactions beneath mid-ocean ridges: implications for the generation of primitive MORB compositions. Contrib. Mineral. Petrol., 157, 429–451 (2009). doi: 10.1007/s00410-008-0344-7
- Laporte D., Toplis M. J., Seyler M., Devidal J.-L. A new experimental technique for extracting liquids from peridotite at very low degrees of melting: application to partial melting of depleted peridotite. Contrib. Mineral. Petrol., 146, 463–484 (2004). doi: 10.1007/s00410-003-0509-3
- Laporte D., Lambart S., Schiano P., Ottolini L. Experimental derivation of nepheline syenite and phonolite liquids by partial melting of upper mantle peridotites. Earth Planet. Sci. Lett., 404, 319–331 (2014). doi: 10.1016/j.epsl.2014.08.002
- Mallik A., Dasgupta R. Reaction between MORB-eclogite derived melts and fertile peridotite and generation of ocean island basalts. Earth Planet. Sci. Lett., 329–330, 97–108 (2012). doi: 10.1016/j.epsl.2012.02.007
- Mallmann G., O'Neill H.St.C. The effect of oxygen fugacity on the partitioning of Re between crystals and silicate melt during mantle melting. Geochim. Cosmochim. Acta, 71, 2837–2857 (2007). doi: 10.1016/j.gca.2007.03.028
- Meen J. K. Elevation of potassium content of basaltic magma by fractional crystallization: The effect of pressure. Contrib. Mineral. Petrol., 104, 309–331 (1990). doi: 10.1007/BF00321487
- Niu Y., Waggoner D. G., Sinton J. M., Mahoney J. J. Mantle source heterogeneity and melting processes beneath seafloor spreading centers: The East Pacific Rise, 18°-19° S. J. Geophys. Res., 101, 27711–27733 (1996). doi: 10.1029/96JB01923
- Palme H., O’Neill H.St.S. Cosmochemical estimates of mantle composition. Treatise on Geochemistry, 2, 1–38 (2007). doi: 10.1016/B0-08-043751-6/02177-0
- Pearce J. A. Trace element characteristics of lavas from destructive plate boundaries. Andesites: Orogenic Andesites and Related Rocks. Thorpe R. S. (Ed.), Wiley, Chichester. pp. 526–547 (1982).
- Pickering-Witter J., Johnston A. D. The effect of variable bulk composition on the melting systematics of fertile peridotitic assemblages. Contrib. Mineral. Petrol., 140, 190–211 (2000). doi: 10.1007/s004100000183
- Plank T. The chemical composition of subducting sediments. Treatise on Geochemistry 2nd Ed. 4, 607–629 (2014).
- Rudnick R. L., Gao S. Composition of the continental crust. Treatise on Geochemistry. 2nd Ed. 4, 1–51 (2014).
- Rustioni G., Audetat A., Keppler H. The composition of subduction zone fluids and the origin of the trace element enrichment in arc magmas. Contrib. Mineral. Petrol., 176, Art. No. 51 (2021). doi: 10.1007/s00410-021-01810-8
- Schwab B. E., Johnston A. D. Melting systematics of modally variable, compositionally intermediate peridotites and the effect of mineral fertility. J. Petrol., 42 (10), 1789–1811 (2001). doi: 10.1093/petrology/42.10.1789
- Sen G. Composition of basaltic liquids generated from a partially depleted lherzolite at 9 kbar pressure. Nature, 299, 336–338 (1982). doi: 10.1038/299336a0
- Stern R. J. Subduction zones. Rev. Geophys., 40 (4), pp. 3–1 – 3–38 (2002). doi: 10.1029/2001RG000108.
- Storch B., Regelous M., Noebel K. M., Haase K. M., Bauer J. Extreme geochemical heterogeneity beneath the North Tonga Arc: Interaction of a subduction zone with intraplate seamount chains. Chem. Geol. 603, 120903 (2022). doi: 10.1016/j.chemgeo.2022.120903
- Sun S., McDonough W. F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In Saunders A. D. and Norry M. J. (Eds.) Magmatism in the Ocean Basins. Geological Society of London, Special Publication, 42, 313–345 (1989).
- Takahashi E., Kushiro I. Melting of a dry peridotite at high pressure and basalt magma genesis. Am. Mineral., 68, 859–879 (1983).
- Tilhac R., Begg G. C., O’Reilly S.Y., Griffin W. L. A global review of Hf-Nd isotopes: New perspectives on the chicken-and-egg problem of ancient mantle signatures. Chem. Geol., 609, 121039 (2022).doi: 10.1016/j.chemgeo.2022.121039
- Turner S. J., Langmuir C. H. The global chemical systematics of arc front stratovolcanoes: Evaluating the role of crustal processes. Earth Planet. Sci. Lett., 422, 182–193 (2015). doi: 10.1016/j.epsl.2015.03.056
- Weaver B. L. Trace element evidence for the origin of ocean-island basalts. Geology, 19, 123–126 (1991). doi: 10.1130/0091-7613(1991)019<0123: TEEFTO>2.3.CO;2
- Willbold M., Stracke A. Trace element composition of mantle end-members: Implications for recycling of oceanic and upper and lower continental crust. Geochem. Geophys. Geosyst., 7 (4), Q04004 (2006). doi: 10.1029/2005GC001005
- Workman R. K., Hart S. R. Major and trace element composition of the depleted MORB mantle (DMM). Earth Planet. Sci. Lett., 231 (1–2), 53–72 (2005). doi: 10.1016/j.epsl.2004.12.005
- Xiong, X.L., Adam J., Green T. H. Rutile stability and rutile/melt HFSE partitioning during partial melting of hydrous basalt: implications for TTG genesis. Chem. Geol., 218 (3–4), 339–359 (2005). doi: 10.1016/j.chemgeo.2005.01.014
- Xiong X., Keppler H., Audétat A., Ni H., Sun W., Li Y. Partitioning of Nb and Ta between rutile and felsic melt and the fractionation of Nb/Ta during partial melting of hydrous metabasalt. Geochim. Cosmochim. Acta, 75, 1673–1692 (2011). doi: 10.1016/j.gca.2010.06.039
- Yaxley G. M., Green D. H. Reactions between eclogite and peridotite: mantle refertilization by subduction of oceanic crust. Schweiz. Mineral. Petrogr. Mitt., 78 (2), 243–255 (1998).
- Zindler A., Hart S. (1986) Chemical geodynamics. Annu. Rev. Earth Planet. Sci., 14, 493–571. doi: 10.1146/annurev.ea.14.050186.002425
Supplementary files
