Major, volatile, ore, and trace elements in magmatic melts from main geodynamic settings. II. Similarity and differences

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Based on the mean contents of elements and their standard deviations estimated in the first part of this research project (Naumov et al, 2022), we compared in detail the distinguished geodynamic settings. In order to compare the compositions of mafic melts, a correction to take into account changes related to the fractionation of main minerals was introduced. The use of numerical criteria made it possible to determine the sequence of elements by the degree of coherence during melting and crystallization of the main magmatic melts. Within this sequence, a regular variation in elemental contents normalized to the average composition of oceanic island melts was established. The melts of mid-ocean ridges show a monotonous increase in normalized contents from the most incompatible (Cs, Ba, U, La, etc.) to compatible elements (Sc, Ni, Cr). The settings of convergent plate boundaries show relative enrichment in the most incompatible elements and significant negative Ta-Nb anomalies relative to neighboring elements. The magmas of continental rifts show the highest enrichment in the most incompatible elements, as well as Pb, Li, and some other elements. Indicator element ratios showing significant variations between the settings were distinguished for mafic melts. Some element ratios are almost identical (within observed variations) in mafic melts from all the settings. The mean element ratios in mafic, intermediate, and silicic magmas show three types of behavior. Some ratios (including the canonic ratios Nb/Ta, Zr/Hf, etc.) in intermediate and silicic magmas are inherited from the composition of mafic melts. Some ratios show irregular changes from mafic to silicic melts (Sr/Cr, F/Th, etc.). There are ratios that changes monotonously and significantly in the sequence from mafic to silicic melts (Ni/Yb, Lu/P, etc.). The variations of element ratios are related to the crystallization differentiation of melts and contributions of geochemically contrasting reservoirs.

Full Text

Restricted Access

About the authors

V. B. Naumov

Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences

Author for correspondence.
Email: naumov@geokhi.ru
Russian Federation, Kosygina, 19, Moscow, 119991

A. V. Girnis

Institute of Geology of Ore Deposits, Petrography, Mineralogy, and Geochemystry, Russian Academy of Sciences

Email: girnis@igem.ru
Russian Federation, Starominetny, 35, Moscow, 119017

V. A. Dorofeeva

Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences

Email: naumov@geokhi.ru
Russian Federation, Kosygina, 19, Moscow, 119991

References

  1. Naumov V. B., Girnis A. V., Dorofeeva V. A., and Kovalenker V. A. Volatile, Trace, and Ore Elements in Magmatic Melts and Natural Fluids: Evidence from Mineral-Hosted Inclusions. II. Effect of Crystallization Differentiation on the Concentrations of Ore Elements. Geochemistry International., 60, 537–550 (2022). doi: 10.1134/S0016702922060040
  2. Naumov V. B., Dorofeeva V. A., Girnis A. V. Petrogenic, volatile, ore and rare elements in magmatic melts of the Earth's major geodynamic settings. I. Average contents. Geohimiya, 68, No. 12, 1253–1272 (2023) [in Russian]. doi: 10.31857/S001675252312004X
  3. Arevalo Jr. R., McDonough W. F. Chemical variations and regional diversity observed in MORB. Chem. Geol. 271, 70–85 (2010). doi: 10.1016/j.chemgeo.2009.12.013
  4. Baier J., Audetat A., Keppler H. The origin of the negative niobium tantalum anomaly in subduction zone magmas. Earth Planet. Sci. Lett. 267, 290–300 (2008). doi: 10.1016/j.epsl.2007.11.032
  5. Baker M. B., Hirschmann M. M., Ghiorso M. S., Stolper E. M.Compositions of near-solidus peridotite melts from experiments and thermodynamic calculations. Nature, 375, 308–311 (1995).
  6. Barr J. A., Grove T. L. Experimental petrology of the Apollo 15 group A green glasses: Melting primordial lunar mantle and magma ocean cumulate assimilation. Geochim. Cosmochim. Acta, 106, 216–230 (2013). doi: 10.1016/j.gca.2012.12.035
  7. Bulatov V. K., Girnis A. V., Brey G. P. Primary magmas of mid-ocean ridges: Analysis of experimental modeling. Geochemistry Int., 38, Suppl. 1, S108-S122 (2000).
  8. Bulatov V. K., Girnis A. V., Brey G. P. Experimental melting of a modally heterogeneous mantle. Mineral. Petrol. 75, 131–152 (2002). doi: 10.1007/s007100200021
  9. Chalot-Prat F., Falloon T. J., Green D. H., Hibberson W. O.An experimental study of liquid compositions in equilibrium with plagioclase spinel lherzolite at low pressures (0.75 GPa). J. Petrol., 51, 2349–2376 (2010). doi: 10.1093/petrology/egq060
  10. Chalot-Prat F., Falloon T. J., Green D. H., Hibberson W. O.Melting of plagioclase + spinel lherzolite at low pressures (0.5 GPa): An experimental approach to the evolution of basaltic melt during mantle refertilisation at shallow depths. Lithos, 172–173, 61–80 (2013). doi: 10.1016/j.lithos.2013.03.012
  11. Collinet M., Medard E., Charlier B., Vander Auwera J., Grove T. L. Melting of the primitive martian mantle at 0.5–2.2 GPa and the origin of basalts and alkaline rocks on Mars. Earth Planet.
  12. Sci. Lett., 427, 83–94 (2015). doi: 10.1016/j.epsl.2015.06.056
  13. Davis F. A., Hirschmann M. M. The effects of K2O on the compositions of near-solidus melts of garnet peridotite at 3 GPa and the origin of basalts from enriched mantle. Contrib. Mineral. Petrol., 166, 1029–1046 (2013). doi: 10.1007/s00410-013-0907-0
  14. Davis F. A., Hirschmann M. M., Humayun M. The composition of the incipient partial melt of garnet peridotite at 3 GPa and the origin of OIB. Earth Planet. Sci. Lett., 308, 380–390 (2011). doi: 10.1016/j.epsl.2011.06.008
  15. Davis F. A., Humayun M., Hirschmann M. M., Cooper R. S. Experimentally determined mineral/melt partitioning of first-row transition elements (FRTE) during partial melting of peridotite at 3 GPa. Geochim. Cosmochim. Acta, 104, 232–260 (2013). doi: 10.1016/j.gca.2012.11.009
  16. Draper D. S., Johnston A. D. Anhydrous PT phase relations of an Aleutian high-MgO basalt: an investigation of the role of olivine-liquid reaction in the generation of arc high-alumina basalts. Contrib. Mineral. Petrol., 112, 501–519 (1992). doi: 10.1007/BF00310781
  17. Elliott T., Plank T., Zindler A., White W., Bourdon B. Element transport from slab to volcanic front at the Mariana arc. J. Geophys. Res., 102 (B7), 14991–15019 (1997). doi: 10.1029/97JB00788
  18. Elthon D., Scarfe C. M. High-pressure phase equilibria of a high-magnesia basalt and the genesis of primary oceanic basalts. Am. Mineral., 69, 1–15 (1984).
  19. Frey F. A., Green D. H., Roy S. D. Integrated model of basalt petrogenesis: a study of quartz tholeiites to olivine melilites from southeast Australia utilizing geochemical and experimental petrologic data. J. Petrol., 19, 463–513 (1978).
  20. Green T. H., Pearson N. J. An experimental study of Nb and Ta partitioning between Ti-rich minerals and silicate liquids at high pressure and temperature. Geochim. Cosmochim. Acta, 51, 55–62 (1987). doi: 10.1016/0016-7037(87)90006-8
  21. Hoernle K., Tilton G., Le Bas M. J., Duggen S., Garbe-Schonberg D. Geochemistry of oceanic carbonatites compared with continental carbonatites: mantle recycling of oceanic crustal carbonate. Contrib. Mineral. Petrol., 142, 520–542 (2002). doi: 10.1007/s004100100308
  22. Hofmann A., White W. Mantle plumes from ancient oceanic crust. Earth Planet. Sci. Lett., 57 (2), 421–436 (1982). doi: 10.1016/0012-821X(82)90161-3
  23. Hofmann A. W. Chemical differentiation of the Earth: the relationship between mantle, continental crust, and oceanic crust. Earth Planet. Sci. Lett., 90, 297–314 (1988). doi: 10.1016/0012-821X(88)90132-X
  24. Hofmann A. W. Mantle geochemistry: the message from oceanic volcanism. Nature, 385, 219–229 (1997). doi: 10.1038/385219a0
  25. Keppler H. Constraints from partitioning experiments on the composition of subduction-zone fluids. Nature, 380, 237–240 (1996). doi: 10.1038/380237a0
  26. Kessel R., Schmidt M. W., Ulmer P. and Pettke T. Trace element signature of subduction-zone fluids, melts and supercritical liquids at 120–180 km depth. Nature, 437, 724–727 (2005). doi: 10.1038/nature03971
  27. Lambart S., Laporte D., Schiano P. An experimental study of focused magma transport and basalt–peridotite interactions beneath mid-ocean ridges: implications for the generation of primitive MORB compositions. Contrib. Mineral. Petrol., 157, 429–451 (2009). doi: 10.1007/s00410-008-0344-7
  28. Laporte D., Toplis M. J., Seyler M., Devidal J.-L. A new experimental technique for extracting liquids from peridotite at very low degrees of melting: application to partial melting of depleted peridotite. Contrib. Mineral. Petrol., 146, 463–484 (2004). doi: 10.1007/s00410-003-0509-3
  29. Laporte D., Lambart S., Schiano P., Ottolini L. Experimental derivation of nepheline syenite and phonolite liquids by partial melting of upper mantle peridotites. Earth Planet. Sci. Lett., 404, 319–331 (2014). doi: 10.1016/j.epsl.2014.08.002
  30. Mallik A., Dasgupta R. Reaction between MORB-eclogite derived melts and fertile peridotite and generation of ocean island basalts. Earth Planet. Sci. Lett., 329–330, 97–108 (2012). doi: 10.1016/j.epsl.2012.02.007
  31. Mallmann G., O'Neill H.St.C. The effect of oxygen fugacity on the partitioning of Re between crystals and silicate melt during mantle melting. Geochim. Cosmochim. Acta, 71, 2837–2857 (2007). doi: 10.1016/j.gca.2007.03.028
  32. Meen J. K. Elevation of potassium content of basaltic magma by fractional crystallization: The effect of pressure. Contrib. Mineral. Petrol., 104, 309–331 (1990). doi: 10.1007/BF00321487
  33. Niu Y., Waggoner D. G., Sinton J. M., Mahoney J. J. Mantle source heterogeneity and melting processes beneath seafloor spreading centers: The East Pacific Rise, 18°-19° S. J. Geophys. Res., 101, 27711–27733 (1996). doi: 10.1029/96JB01923
  34. Palme H., O’Neill H.St.S. Cosmochemical estimates of mantle composition. Treatise on Geochemistry, 2, 1–38 (2007). doi: 10.1016/B0-08-043751-6/02177-0
  35. Pearce J. A. Trace element characteristics of lavas from destructive plate boundaries. Andesites: Orogenic Andesites and Related Rocks. Thorpe R. S. (Ed.), Wiley, Chichester. pp. 526–547 (1982).
  36. Pickering-Witter J., Johnston A. D. The effect of variable bulk composition on the melting systematics of fertile peridotitic assemblages. Contrib. Mineral. Petrol., 140, 190–211 (2000). doi: 10.1007/s004100000183
  37. Plank T. The chemical composition of subducting sediments. Treatise on Geochemistry 2nd Ed. 4, 607–629 (2014).
  38. Rudnick R. L., Gao S. Composition of the continental crust. Treatise on Geochemistry. 2nd Ed. 4, 1–51 (2014).
  39. Rustioni G., Audetat A., Keppler H. The composition of subduction zone fluids and the origin of the trace element enrichment in arc magmas. Contrib. Mineral. Petrol., 176, Art. No. 51 (2021). doi: 10.1007/s00410-021-01810-8
  40. Schwab B. E., Johnston A. D. Melting systematics of modally variable, compositionally intermediate peridotites and the effect of mineral fertility. J. Petrol., 42 (10), 1789–1811 (2001). doi: 10.1093/petrology/42.10.1789
  41. Sen G. Composition of basaltic liquids generated from a partially depleted lherzolite at 9 kbar pressure. Nature, 299, 336–338 (1982). doi: 10.1038/299336a0
  42. Stern R. J. Subduction zones. Rev. Geophys., 40 (4), pp. 3–1 – 3–38 (2002). doi: 10.1029/2001RG000108.
  43. Storch B., Regelous M., Noebel K. M., Haase K. M., Bauer J. Extreme geochemical heterogeneity beneath the North Tonga Arc: Interaction of a subduction zone with intraplate seamount chains. Chem. Geol. 603, 120903 (2022). doi: 10.1016/j.chemgeo.2022.120903
  44. Sun S., McDonough W. F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In Saunders A. D. and Norry M. J. (Eds.) Magmatism in the Ocean Basins. Geological Society of London, Special Publication, 42, 313–345 (1989).
  45. Takahashi E., Kushiro I. Melting of a dry peridotite at high pressure and basalt magma genesis. Am. Mineral., 68, 859–879 (1983).
  46. Tilhac R., Begg G. C., O’Reilly S.Y., Griffin W. L. A global review of Hf-Nd isotopes: New perspectives on the chicken-and-egg problem of ancient mantle signatures. Chem. Geol., 609, 121039 (2022).doi: 10.1016/j.chemgeo.2022.121039
  47. Turner S. J., Langmuir C. H. The global chemical systematics of arc front stratovolcanoes: Evaluating the role of crustal processes. Earth Planet. Sci. Lett., 422, 182–193 (2015). doi: 10.1016/j.epsl.2015.03.056
  48. Weaver B. L. Trace element evidence for the origin of ocean-island basalts. Geology, 19, 123–126 (1991). doi: 10.1130/0091-7613(1991)019<0123: TEEFTO>2.3.CO;2
  49. Willbold M., Stracke A. Trace element composition of mantle end-members: Implications for recycling of oceanic and upper and lower continental crust. Geochem. Geophys. Geosyst., 7 (4), Q04004 (2006). doi: 10.1029/2005GC001005
  50. Workman R. K., Hart S. R. Major and trace element composition of the depleted MORB mantle (DMM). Earth Planet. Sci. Lett., 231 (1–2), 53–72 (2005). doi: 10.1016/j.epsl.2004.12.005
  51. Xiong, X.L., Adam J., Green T. H. Rutile stability and rutile/melt HFSE partitioning during partial melting of hydrous basalt: implications for TTG genesis. Chem. Geol., 218 (3–4), 339–359 (2005). doi: 10.1016/j.chemgeo.2005.01.014
  52. Xiong X., Keppler H., Audétat A., Ni H., Sun W., Li Y. Partitioning of Nb and Ta between rutile and felsic melt and the fractionation of Nb/Ta during partial melting of hydrous metabasalt. Geochim. Cosmochim. Acta, 75, 1673–1692 (2011). doi: 10.1016/j.gca.2010.06.039
  53. Yaxley G. M., Green D. H. Reactions between eclogite and peridotite: mantle refertilization by subduction of oceanic crust. Schweiz. Mineral. Petrogr. Mitt., 78 (2), 243–255 (1998).
  54. Zindler A., Hart S. (1986) Chemical geodynamics. Annu. Rev. Earth Planet. Sci., 14, 493–571. doi: 10.1146/annurev.ea.14.050186.002425

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Average contents of rare components in pseudo-primary mafic melts of various geodynamic settings (I–VI), normalized to the composition of the primitive mantle (Palme, O'Neill, 2014).

Download (296KB)
3. Fig. 2. Assessment of the geochemical similarity of elements in the processes of formation and evolution of the main magmas of different geochemical environments based on the ratio Q( /Ei )= max( /Ei )- min( /Ei ) /( /Ei), where REE/Ei is the ratio of REE contents to the element in question in each setting, /Ei is the ratio of average values in all settings. The position of an element in a row is determined by the minimum of the Q function.

Download (163KB)
4. Fig. 3. The contents of elements in various geochemical reservoirs and media and the average compositions of pseudo- primary mafic melts from different geodynamic settings, normalized to the average composition of oceanic island melts (situation II). CC is the average composition of the continental crust (Rudnick, Gao, 2014), GLOSS – composition of subduction sediments (Plank, 2014), carbonatite – average composition of oceanic carbonatites (Hoernle et al., 2002), as an assessment of the composition of a carbonatite melt – an agent of mantle metasomatosis, an aqueous fluid – the composition of an aqueous fluid in equilibrium with eclogite at 4 GPa (Kessel et al., 2005), as an assessment of the composition of a fluid separating from the oceanic crust in subduction zones and modifying rocks of a mantle wedge.

Download (392KB)
5. Fig. 4. Variations in the ratios of element contents in the average compositions of basic, medium and acidic melts from geodynamic settings II–VI. The relationships are divided into groups as follows. The columns are distinguished by the similarity or difference of the average compositions of mafic melts from different geodynamic settings: a – indicator relationships with significant differences between settings; b - relationships that are almost identical for all settings. The series combine different types of ratio changes from basic melts to acidic ones: 1 – values in medium and acidic melts are identical to those in basic melts; 2 – irregular but variable variations; 3 - systematic parallel changes, sometimes by several orders of magnitude. The average values of the ratios in the primitive mantle (PM; Palme, O'Neill, 2014) and the continental crust are also given (CC; Rudnick, Gao, 2014).

Download (524KB)

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».