Formation of oceanic crust within the Andrew Bain fault zone of the Southwest Indian ridge (Petrological and geochemical data)

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A petrogeochemical study of basalts (lithophile elements and Sr-Nd-Pb isotopes, compositions of liquidus olivine and spinel) from the transition zone of the Southwest Indian Ridge in the area of the Du Toit and Andrew Bain faults revealed significant differences in their composition. Within the rift valley adjacent to the faults, tholeiites enriched in Na and depleted in Fe (Na-TOR genetic type) are typical. Deep-type basalts (TOR-1) are present in the western side of the Andrew Bain Fault. The outpouring of these types of magmas reflects a possible change in geodynamic regime during this zone formation: from deeper and higher temperature melting to shallower ones (Sushchevskaya et al., 2022).

Differences in the primary melts of tholeiites from the rift valley and the Andrew Bain Transform Fault are also traced in the liquidus olivine compositions. The rift valley olivines are similar to typical Na-TOR olivines with a Mg content of Fo88–87, low Ni and elevated Mn. On the contrary, tholeiite olivines of the Andrew Bain Fault are enriched in Ni and depleted in Mn, which may indicate pyroxenite included in the primary melt formation. This component is either oceanic lithosphere recycled through the deep mantle or fragments of previously formed oceanic crust, which are subsequently involved in melting during the spreading axes jumping. A similar process is typical for the region of the Bouvet Triple Junction, where a significant heterogeneity of the olivine composition in terms of trace-element contents was revealed.

The isotope characteristics of the Andrew Bain Fault tholeiites differ in Pb and Sr radiogenic composition and are similar to those of enriched magmas from such Indian Ocean rises as Crozet, Marion and Bouvet, but not from the Konrad and Af. Nikitin Rises. The source of such tholeiite melts is close in composition to the model HIMU type (with high U/Pb), possibly with an admixture of mantle material with EMII characteristics (with elevated Rb/Sr).

Full Text

Restricted Access

About the authors

N. M. Sushchevskya

Vernadsky Institute of Geochemistry and Analytical Chemistry (GEOKHI), Russian Academy of Sciences

Author for correspondence.
Email: nadyas@geokhi.ru
Russian Federation, Kosigina, 19, Moscow, 119991

V. D. Scherbakov

Moscow State University

Email: nadyas@geokhi.ru

Museum of Natural History

Russian Federation, Leninskie gori, 1, Moscow, 119991

A. A. Peive

Geological Institute, Russian Academy of Sciences

Email: apeyve@yandex.ru
Russian Federation, Pizhevski, 7 , Moscow, 119991

E. P. Dubinin

Moscow State University

Email: edubinin08@rambler.ru

Museum of Natural History

Russian Federation, Leninskie gori, 1, Moscow

B. V. Belyatsky

Karpinsky All-Russia Research Geological Institute (VSEGEI)

Email: bbelyatsky@mail.ru
Russian Federation, Sredniy pr. 74, St. Petersburg, 199106

A. V. Zhilkina

Vernadsky Institute of Geochemistry and Analytical Chemistry (GEOKHI), Russian Academy of Sciences

Email: nadyas@geokhi.ru
Russian Federation, Kosigina, 19, Moscow, 119991

References

  1. Borisova A.Ju., Nikulin V. V., Belyackii B. V., Ovchinnikova G. V., Levskii L. K., Sushchevskya N. M. Geochemistry of the late alkaline series of the Ob and Lena seamounts, Conrad Rise (Indian Ocean) and peculiarities of compositions of their mantle sources. Geohimiya (6), 559–574 (1996) [in Russian].
  2. Dmitriev L. V., Sobolev A. V., Sushchevskya N. M. Evolution of tholeiitic magmatism of the rift zones of the World Ocean. 27th MGK. Geology of the World Ocean. M.: Nauka, Vol. 6, Part.1, 147–149 (1984) [in Russian].
  3. Dubinin E. P. Geodynamic settings of the formation of microcontinents, submerged plateaus, and nonvolcanic islands within continental margins. Oceanology, 58, (3), 463–475 (2018).
  4. Dubinin E. P., Kohan A. V., Sushchevskya N. M. (2013) Tectonics and Magmatism of Ultraslow Spreading Ridges. Geotektonika, (3), 3–30. doi: 10.7868/S0016853X13030028
  5. Dubinin E. P., Sushchevskya N. M., Groholskii A. L. The history of south Atlantics spreading ridges development and time-space position of Bouve triple connection. Russian Journal of Earth Sciences, 1, (5), 423–435 (1999) [in Russian].
  6. Dubinin E. P., Galushkin Ju.I., Groholskii A. L., Kohan A. V., Sushchevskya N. M. Hot and cold zones of the Southeast Indian Ridge and their influence on the features of its structure and magmatism (numerical and physical modeling). Geotektonika, (3). 3–27 (2017) [in Russian].
  7. Kohan A. V., Dubinin E. P., Sushchevskya N. M. Structure and Evolution of the Eastern Part of the Southwest Indian Ridge. Geotektonika, (4), 3–24 (2019) [in Russian].
  8. Kolotov V. P., Zhilkina A. V., Shirokova V. I., Dogadkin N. N., Gromyak I. N., Dogadkin D. N., Zybinskii A. M., Tjurin D. A. A new approach to sample mineralization in an open system for the analysis of geological samples by inductively coupled plasma mass spectrometry with improved performance characteristics. Journal of Analytical Chemistry, 75 (5), 394–407 (2020). doi: 10.31857/S0044450220050102
  9. Leichenkov G. L., Guseva Ju.B., Gandjuhin V. V., Ivanov S. V., Safonova L. V. Crustal structure and history of tectonic development of the Indian Ocean water area of Antarctica. Geotektonika, (1), 8–28 (2014) [in Russian].
  10. Melanholina E. N. Relationship between superficial and deep tectonics within the African region based on geological–geophysical data. Geotektonika, (6), 98–108 (2021).
  11. Melanholina E. N., Sushchevskya N. M. Development of passive volcanic margins of the Central Atlantic and initial opening of ocean. Geotektonika, (1), 86–106 (2015). doi: 10.7868/S0016853X15010038
  12. Migdisova N. A., Sobolev A. V., Sushchevskya N. M., Dubinin E. P., Kuzmin D. V. Mantle heterogeneity at the Bouvet triple junction based on the composition of olivine phenocrysts. Geology and Geophysics, 58, (11), 1633–1648 (2017). doi: 10.15372/GiG20171102
  13. Peive A.A, Skolotnev S. G. Specific features of basalts from the western part of Andrew Bain Fault, Southwest Indian Ridge. DAN. 477 (4), 441–447 (2017). doi: 10.7868/S0869565217340126
  14. Sushchevskya N. M., Dmitriev L. V., Sobolev A. V. Petrochemical criterion for classification of quenching glasses of oceanic tholeiites. DAN USSR. 268 (6), 953–961 (1983).
  15. Sushchevskya N. M., Cehonya T. I., Dubinin E. P., Mirlin E. G., Kononkova N. N. Formation of Oceanic Crust in Mid-Ocean Ridges of the Indian Ocean. Geochemistry, 34 (10), 963–975 (1996).
  16. Sushchevskya N. M., Bonatti E., Peive A. A., Kameneckii V. C., Belyackii B. V., Cehonya T. I., Kononkova N. N.Heterogeneity of Rift Magmatism in the Equatorial Province of the Mid-Atlantic Ridge (15° N to 3° S). Geochemistry, 40 (1), 26–50 (2002).
  17. Sushchevskya N. M., Belyackii B. V., Dubinin E. P., Cehonya T. I., Mihal'skii E.B., Leichenkov G. L. Geochemical Heterogeneity of Tholeiitic Magmatism in Circum-Antarctic Rift Zones. Geochemistry, 41 (8), 727–740 (2003).
  18. Sushchevskaya N. M., Migdisova N. A., Belyatskii B. V., Peyve A. A. Genesis of Enriched Tholeiitic Magmas in the Western Segment of the Southwest Indian Ridge, South Atlantic Ocean (2003), Geochem. Int., 41 (1), 1–20 (2003).
  19. Sushchevskaya N. M., Kamenetsky V. S., Belyatsky B. V., and Artamonov A. V. Geochemical Evolution of Indian Ocean Basaltic Magmatism, Geochem. Int., 51 (8), 509–622 (2013).
  20. Cuschevskaya N. M., Koptev-Dvornikov E. V., Peive A. A., Hvorov D. M., Belyackii B. V., Kameneckii V. S., Migdisova N. A., Skolotnev S. G. Features of the processed of crystallization and geochemistry of tholeiite magmas of the Western end of African-Antarctic Ridge (shpiss Ridge) in the area of Bouve triple junction. Russian Journal of Earth Sciences, 1 (3). 221–250 (1999).
  21. Sushchevskaya N. M., Dubinin E. P., Shcherbakov V. D., Belyatsky B. V., and Zhilkina A. V. Generation of Tholeiitic Magmas in the Interaction Zone of Evolving Ridge, Fracture Zone, and Plume: Evidence from Basalts in 332B Hole, DSDP Leg 37, North Atlantic. Geochem. Int., 59 (10), 903–921 (2021).
  22. Sushchevskaya N. M., Leitchenkov G. L., Belyatsky B. V., Zhilkina A. V. Evolution of the Karoo-Maud plume and formation of Mesozoic igneous provinces in Antarctica. Geochem. Int., 60 (6), 509–529 (2022). Russian Text © The Author(s), 2022, published in Geokhimiya, 2022, Vol. 6.
  23. Armienti P., Longo P. Three-dimensional representation of geochemical data from a multidimensional compositional space. Intern. J. Geosci., 2 (3), 231–239 (2011). doi: 10.4236/ijg.2011.23025
  24. Bernard A., Munshy M., Rotstein Y., Sauter D. Refined spreading history at the Southwest Indian Ridge for the last 96 Ma, with the aid of satellite gravity data. Geophys. J. Int., 162 (3), 765–778 (2005). doi: 10.1111/j.1365-246X.2005.02672.x
  25. Bonatti E., Seyler M., Sushevskaya N. A. Cold suboceanic mantle belt at the Earth's Equator. Science, 261 (5119), 315–320 (1993). doi: 10.1126/science.261.5119.31
  26. Borisova A.Yu., Belyatsky B. V., Portnyagin M. V., and Suschevskaya N. M. Petrogenesis of an olivine-phyric basalts from the Aphanasey Nikitin Rise: evidence for contamination by cratonic lower continental crust. J. Petrology, 42 (2), 277–319 (2001). doi: 10.1093/petrology/42.2.277
  27. Breton T., François N., Sylvainichat, Moinea B., Moreirad M., Rose-Kogaa E. F., Auclaira D., Bosqa Ch., Wavranta L–M. Geochemical heterogeneities within the Crozet hotspot. Earth Planet. Sci. Lett., 376, 126–136 (2013). doi: 10.1016/j.epsl.2013.06.020
  28. Brunelli D., Ciprani A., Bonatti E. Thermal effects of pyroxenites on mantle melting below Mid- Ocean Ridges. Nature Geoscience, 11, 520–525 (2018). doi: 10.1038/s41561-018-0139-z
  29. Burke K., Steinberger B., Torsvik T. H., Smethurst M. A. Plume generation zones at the margins of large low shear velocity provinces on the core-mantle boundary. Earth Planet. Sci. Lett., 265 (1–2), 49–60 (2008). doi: 10.1016/j.epsl.2007.09.042
  30. Chuan-Zhou L., Henry J. B. Dick, Ross N. Mitchell1, Wu W., Zhen-Yu Zh., Albrecht W. Hofmann, Jian-Feng Y., Yang L. Archean cratonic mantle recycled at a mid-ocean ridge. Sci. Adv., 8 (22), (2022). doi: 10.1126/sciadv.abn674
  31. Coogan L. A., Saunders A. D., Wilson R. N. Aluminium-in-olivine thermometry of primitive basalts: Evidence of an anomalously hot mantle source for large igneous provinces. Chemical Geology, 368, 1–10 (2014). doi: 10.1016/j.chemgeo.2014.01.004
  32. Davaille A., Romanowicz B. Deflating the LLSVPs: bundles of mantle thermochemical plumes rather than thick stagnant “piles”. Tectonics, 39 (10), e2020TC006265 (2020). doi: 10.1029/2020TC006265.
  33. Dick H. J.B., Lin J., Schouten H. An ultraslow-spreading class of ocean ridge. Nature 426, 405–412 (2003). doi: 10.1038/nature02128
  34. Gale A., Langmuir Ch. H. and Coolleen A., Dalton C. A. The Global Systematics of Ocean Ridge Basalts and their Origin. J. Petrol, 55 (6), 1051–1082 (2014). doi: 10.1093/petrology/egu017
  35. Hamelin B. & Alle`gre C. J. Large-scale regional units in the depleted upper mantle revealed by an isotope study of the South-West Indian Ridge. Nature 315, 196–199 (1985). doi: 10.1038/315196a0
  36. Hofmann A. W. Chemical differentiation of the Earth: The relationship between mantle, continental crust, and oceanic crust. Earth Planet. Sci. Lett., 90. 297–314 (1988). doi: 10.1016/0012-821X(88)90132-X
  37. Hofmann A. W. Sampling Mantle Heterogeneity through Oceanic Basalts: Isotopes and Trace Elements. The Mantle and Core, 2, 61–101 (2003). doi: 10.1016/B0-08-043751-6/02123-X
  38. Homrighausen S., Hoernle K., Zhou H., Geldmacher J., Wartho J-A., Hauff F., Werner R., Jung S., Morgan J. P. Paired EMI-HIMU hotspots in the South Atlantic-Starting plume heads trigger compositionally distinct secondary plumes. Sci. Adv., 6 (28), eaba0282 (2020). doi: 10.1126/sciadv.aba0282
  39. Humphreys E. R., Niu Y. On the composition of ocean island basalts (OIB): The effects of lithospheric thickness variation and mantle metasomatism. Lithos, 112 (1–2), 118–136 (2009). doi: 10.1016/j.lithos.2009.04.038
  40. Janney P. E., Le Roex A. P. and Carson R. W. Hafnium isotope and trace element constrains on the nature of mantle heterogeneity beneath the Central Southwest Indian Ridge (13° E to 47° E). J. Petrol., 46 (12), 2427–2464 (2005). doi: 10.1093/petrology/egi060
  41. Jourdan F., Féraud G., Bertrand H., Watkeys M. K. From flood basalts to the inception of oceanization: example from the 40Ar/39Ar high-resolution picture of the Karoo large igneous province. Geochem. Geophys. Geosyst., 8 (2), 1–20 (2007). doi: 10.1029/2006GC001392
  42. Kalt A., Hegner E., Satir M. Nd, Sr, and Pb isotopic evedence for diverse lithospheric mantle source of East African Rift carbonatites. Tectonophysics, 278 (1–4), 31–45 (1977). doi: 10.1016/S0040-1951(97)00093-0
  43. Kamenetsky V. S. and Maas R. Mantle-melt evolution (dynamic source) in the origin of a single MORB suite: a perspective from magnesian glasses of Macquarie Island, J. Petrol., 43 (10), 1909–1922 (2002). doi: 10.1093/petrology/43.10.1909
  44. Kamenetsky V. S., Maas R., Sushchevskaya N. M., Norman M. D., Cartwright I., Peyve A. A. Remnants of Gondwan continental lithosphere in oceanic upper mantle: Evidence from the South Atlantic Ridge. Geology, 29 (3), 243–246 (2001). doi: 10.1130/0091-7613(2001)029<0243: ROGCLI>2.0.CO;2
  45. Kinzler R. L., Grove T. L. Primary magmas of mid-ocean ridge basalts, 2. Applications. J. Geophys. Res., 97 (B5), 6907–6926 (1992). doi: 10.1029/91JB02841
  46. Klein E. M., Langmuir C. H. Global correlations of ocean ridge basalt chemistry with axial depth and crustal thickness. J. Geophys. Res., 92 (B8), 8089–8115 (1987). doi: 10.1029/JB092iB08p08089
  47. Klein E. M. & Langmuir C. H. Local versus global variations in ocean ridge basalt composition: A reply. J. Geophys. Res 94 (B4), 4241–4252 (1989). doi: 10.1029/JB094iB04p04241
  48. Le Roex A. P., Dick H. J.B., Watkins R. T. Petrogenesis of anomalous K-enriched MORB from the Southwest Indian Ridge: 11.53°E to 14.38°E. Contrib. Mineral. Petrol., 110 (2), 253–268 (1992). doi: 10.1007/BF00310742
  49. Le Roex A. P., Dick H. J.B., Erlank A. J., Reid A. M., Frey F. A. and Hart S. R. Geochemistry, mineralogy and petrogenesis of lavas erupted along the Southwest Indian Ridge between the Bouvet triple junction and 11 degrees east. J. Petrol., 24 (3), 267–318 (1983). doi: 10.1093/petrology/24.3.267
  50. Mahoney J. J., le Roex A. P., Peng Z., Fisher R. L. & Natland J. H. Southwestern limits of Indian Ocean Ridge mantle and the origin of low 206Pb/204Pb mid-ocean ridge basalts: isotope systematics of the Southwest Indian Ridge (17°–50°E). J. Geophys. Res., 97 (B13), 19771–19790 (1992). doi: 10.1029/92JB01424
  51. Marks K. and Tikku A. A. Cretaceous reconstruction of East Antarctica, Africa and Madagascar. Earth Planet. Sci. Lett., 186 (3–4), 479–395 (2001). doi: 10.1016/S0012-821X(01)00262-X
  52. Nosova A. A., Sazonova L. V., Kargin A. V., Smirnova M. D., Lapin A. V., Shcherbakov V. D. Olivine in ultramafic lamprophyres: chemistry, crystallisation, and melt sources of Siberian Pre-and post-trap aillikites. Contrib. Mineral. Petrol., 173 (7), 55 (2018). doi: 10.1007/s00410-018-1480-3
  53. Sauter S., Cannat M., Meyzen C., Bezos A., Patriat P., Humler E. and Debayle E. Propagation of a meltinganomaly along the ultraslow Southwest Indian Ridge between 46°E and 52 °20′ E: interaction with the Crozet hotspot. Geophys. J. Int., 179 (2), 687–699 (2009). doi: 10.1111/j.1365-246X.2009.04308.x
  54. Schilling J.-G. Fluxes and excess temperatures of mantle plumes inferred from their interaction with migrating mid-ocean ridges. Nature, 352 (6334), 397–403 (1991). doi: 10.1038/352397a0
  55. Schwindrofska A., Hoernle K., Hauff F., van den Bogaard P., Werner R., Garbe-Schonberg D. Origin of enriched components in the South Atlantic: Evidence from 40Ma geochemical zonation of the Discovery Seamounts. Earth Planet. Sci. Lett., 441, 167–177 (2016). doi: 10.1016/j.epsl.2016.02.041
  56. Sigurdsson H. & Schilling J.-C. Spinels in Mid-Atlantic Ridge basalts: Chemistry and occurrence. Earth Planet. Sci. Lett., 29 (1), 7–20 (1976). doi: 10.1016/0012-821X(76)90021-2
  57. Sobolev A. V., Dmitriev L. V. Primary melts of tholeiites of oceanic rifts (TOR): Evidence from studies of primitive glasses and melt inclusions in minerals. Abstracts IGC. Washington D. C., 147 (1989).
  58. Sobolev A. V., Hofmann A. W., Kuzmin D. V., Yaxley G. M., Arndt N. T., Chung S., Danyushevsky L. V., Elliott T., Frey F. A., Garcia M. O., Gurenko A. A., Kamenetsky V. S., Kerr A. C., Krivolutskaya N. A., Matvienkov V. V., Nikogosian I. K., Rocholl A., Sigurdsson I. A., Sushchevskaya N. M., Teklay M. The amount of recycled crust in sources of mantle-derived melts. Science, 316 (5823), 412 (2007). doi: 10.1126/science.1138113
  59. Sun S.-S., McDonough W. F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Magmatism in the ocean basins. Eds. Suanders A. D., Norry M. J., Geol. Soc. Spec. Publ., 42, 313–345 (1989). doi: 10.1144/GSL.SP.1989.042.01.19
  60. Sushchevskaya N. M., Tsekhonya T. I., Mirlin E. G. Comparision of the mechanisms of generation andfractionation of tholeiitic melts in Indian-Atlantic and Pacific rifting zones. Experiment in Geosciences, 5 (1), 7–9 (1996).
  61. Torsvik T. H., Smethurst M. A., Burke K., Steinberger B. Large igneous provinces generated from the margins of the large low-velocity provinces in the deep mantle. Geophys. J. Int., 167 (3), 1447–1460 (2006).doi: 10.1111/j.1365-246X.2006.03158.x
  62. Wan Z., Coogan L. A., Canil D. (2008) Experimental calibration of aluminum partitioning between olivine and spinel as a geothermometer. Am. Mineral., 93 (7), 1142–1147. doi: 10.2138/am.2008.2758м

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. The location of dredging stations ( stars) of the 23rd flight of the NIS Academician Nikolay Strakhov within the Southwestern Indian Ridge, from which slightly modified basalts and dolerites were studied.

Download (232KB)
3. Fig. 2. The content of the main elements in basalts and dolerites of the Andrew Bain fault zone area. (a-d) – Correlation dependences of Al, K, Si, Ti on MdO; (e) – Na8-Fe8 parameters showing the differences of these elements in the initial melts, depending on the depth and degree of melting of the oceanic mantle (Klein, Langmuir, 1987, 1989). The compositions of basalts of others S2317, 18 (squares) clearly related to the small- scale type of Na-TOR tholeites are highlighted by the field (Sushchevskaya et al., 2002). The rhombus marks the composition of the primary Na-TOR melt according to (Sushchevskaya et al., 2002). The data from the table are used. 1 and works (Peivet et al., 2017).

Download (260KB)
4. Fig. 3. Changes in the content of Ni, Cr and Mn in olivine inclusions of the Andrew Bain fault zone. Correlations of concentrations of Ni, Cr, and Mn and the magnesia of olivine (Fo) in various oceanic provinces (a, b, c). (d) - Change in values of 100×Mn/Fe Ni/(Mg/Fe)/1000, showing compositions of olivines in equilibrium with peridotite and pyroxenite the mantle (Sobolev et al., 2007).

Download (362KB)
5. Fig. 4. Variations of Al, Cr (a, b) in spinel inclusions and calculated T °C crystallization by (Coogan et al., 2014) – (in).

Download (131KB)
6. Fig. 5. The nature of variations of the lithophilic element contents normalized to the primitive mantle (Sun, McDonough, 1989) in the basalts of the Andrew Bayne area (a) and the adjacent YUZIH area (b). Constructed according to Table. 1 and works (Janney et al., 2005).

Download (459KB)
7. Fig. 6. Variations of the Gd/Yb ratio in the toleites of the zone Andrew Bain (a) and YUZIH from the TSB area to 50° VD (b). Data from Table were used. 1 and works (Janney et al., 2005; Migdisova et al., 2017).

Download (184KB)
8. Fig. 7. Comparative characteristics of isotope ratios 206Pb/204Pb, 207Pb/204Pb, 208Pb/204Pb 87Sr/86Sr and 143Nd/144Nd magmas of the Andrew Bayne area, underwater uplifts and islands of the Indian Ocean – Bouvet, Afanasia Nikitina, Konrad, Crozet, Marion. The data published in the works (Borisova et al., 1996; Borisova et al., 2001; Breton et al., 2013; Su- Shchevskaya et al., 2013) were used. The data are adjusted to the initial values for the age of the outpouring. Enriched model (EM I, EM II, HIMU) and (DM) depleted software sources (Armienti, Longo, 2011). It was constructed using data from Table 3 and works (Sobolev et al., 2007; Migdisova et al., 2017).

Download (342KB)
9. Fig. 8. The distribution area of the African plume within the Southern Ocean according to transverse wave velocity data (Jacques et al., 2019).

Download (388KB)

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».