Formation of oceanic crust within the Andrew Bain fault zone of the Southwest Indian ridge (Petrological and geochemical data)
- Authors: Sushchevskya N.M.1, Scherbakov V.D.2, Peive A.A.3, Dubinin E.P.2, Belyatsky B.V.4, Zhilkina A.V.1
-
Affiliations:
- Vernadsky Institute of Geochemistry and Analytical Chemistry (GEOKHI), Russian Academy of Sciences
- Moscow State University
- Geological Institute, Russian Academy of Sciences
- Karpinsky All-Russia Research Geological Institute (VSEGEI)
- Issue: Vol 69, No 1 (2024)
- Pages: 3-20
- Section: Articles
- URL: https://journals.rcsi.science/0016-7525/article/view/259950
- DOI: https://doi.org/10.31857/S0016752524010016
- EDN: https://elibrary.ru/MWIPZC
- ID: 259950
Cite item
Abstract
A petrogeochemical study of basalts (lithophile elements and Sr-Nd-Pb isotopes, compositions of liquidus olivine and spinel) from the transition zone of the Southwest Indian Ridge in the area of the Du Toit and Andrew Bain faults revealed significant differences in their composition. Within the rift valley adjacent to the faults, tholeiites enriched in Na and depleted in Fe (Na-TOR genetic type) are typical. Deep-type basalts (TOR-1) are present in the western side of the Andrew Bain Fault. The outpouring of these types of magmas reflects a possible change in geodynamic regime during this zone formation: from deeper and higher temperature melting to shallower ones (Sushchevskaya et al., 2022).
Differences in the primary melts of tholeiites from the rift valley and the Andrew Bain Transform Fault are also traced in the liquidus olivine compositions. The rift valley olivines are similar to typical Na-TOR olivines with a Mg content of Fo88–87, low Ni and elevated Mn. On the contrary, tholeiite olivines of the Andrew Bain Fault are enriched in Ni and depleted in Mn, which may indicate pyroxenite included in the primary melt formation. This component is either oceanic lithosphere recycled through the deep mantle or fragments of previously formed oceanic crust, which are subsequently involved in melting during the spreading axes jumping. A similar process is typical for the region of the Bouvet Triple Junction, where a significant heterogeneity of the olivine composition in terms of trace-element contents was revealed.
The isotope characteristics of the Andrew Bain Fault tholeiites differ in Pb and Sr radiogenic composition and are similar to those of enriched magmas from such Indian Ocean rises as Crozet, Marion and Bouvet, but not from the Konrad and Af. Nikitin Rises. The source of such tholeiite melts is close in composition to the model HIMU type (with high U/Pb), possibly with an admixture of mantle material with EMII characteristics (with elevated Rb/Sr).
Full Text

About the authors
N. M. Sushchevskya
Vernadsky Institute of Geochemistry and Analytical Chemistry (GEOKHI), Russian Academy of Sciences
Author for correspondence.
Email: nadyas@geokhi.ru
Russian Federation, Kosigina, 19, Moscow, 119991
V. D. Scherbakov
Moscow State University
Email: nadyas@geokhi.ru
Museum of Natural History
Russian Federation, Leninskie gori, 1, Moscow, 119991A. A. Peive
Geological Institute, Russian Academy of Sciences
Email: apeyve@yandex.ru
Russian Federation, Pizhevski, 7 , Moscow, 119991
E. P. Dubinin
Moscow State University
Email: edubinin08@rambler.ru
Museum of Natural History
Russian Federation, Leninskie gori, 1, MoscowB. V. Belyatsky
Karpinsky All-Russia Research Geological Institute (VSEGEI)
Email: bbelyatsky@mail.ru
Russian Federation, Sredniy pr. 74, St. Petersburg, 199106
A. V. Zhilkina
Vernadsky Institute of Geochemistry and Analytical Chemistry (GEOKHI), Russian Academy of Sciences
Email: nadyas@geokhi.ru
Russian Federation, Kosigina, 19, Moscow, 119991
References
- Borisova A.Ju., Nikulin V. V., Belyackii B. V., Ovchinnikova G. V., Levskii L. K., Sushchevskya N. M. Geochemistry of the late alkaline series of the Ob and Lena seamounts, Conrad Rise (Indian Ocean) and peculiarities of compositions of their mantle sources. Geohimiya (6), 559–574 (1996) [in Russian].
- Dmitriev L. V., Sobolev A. V., Sushchevskya N. M. Evolution of tholeiitic magmatism of the rift zones of the World Ocean. 27th MGK. Geology of the World Ocean. M.: Nauka, Vol. 6, Part.1, 147–149 (1984) [in Russian].
- Dubinin E. P. Geodynamic settings of the formation of microcontinents, submerged plateaus, and nonvolcanic islands within continental margins. Oceanology, 58, (3), 463–475 (2018).
- Dubinin E. P., Kohan A. V., Sushchevskya N. M. (2013) Tectonics and Magmatism of Ultraslow Spreading Ridges. Geotektonika, (3), 3–30. doi: 10.7868/S0016853X13030028
- Dubinin E. P., Sushchevskya N. M., Groholskii A. L. The history of south Atlantics spreading ridges development and time-space position of Bouve triple connection. Russian Journal of Earth Sciences, 1, (5), 423–435 (1999) [in Russian].
- Dubinin E. P., Galushkin Ju.I., Groholskii A. L., Kohan A. V., Sushchevskya N. M. Hot and cold zones of the Southeast Indian Ridge and their influence on the features of its structure and magmatism (numerical and physical modeling). Geotektonika, (3). 3–27 (2017) [in Russian].
- Kohan A. V., Dubinin E. P., Sushchevskya N. M. Structure and Evolution of the Eastern Part of the Southwest Indian Ridge. Geotektonika, (4), 3–24 (2019) [in Russian].
- Kolotov V. P., Zhilkina A. V., Shirokova V. I., Dogadkin N. N., Gromyak I. N., Dogadkin D. N., Zybinskii A. M., Tjurin D. A. A new approach to sample mineralization in an open system for the analysis of geological samples by inductively coupled plasma mass spectrometry with improved performance characteristics. Journal of Analytical Chemistry, 75 (5), 394–407 (2020). doi: 10.31857/S0044450220050102
- Leichenkov G. L., Guseva Ju.B., Gandjuhin V. V., Ivanov S. V., Safonova L. V. Crustal structure and history of tectonic development of the Indian Ocean water area of Antarctica. Geotektonika, (1), 8–28 (2014) [in Russian].
- Melanholina E. N. Relationship between superficial and deep tectonics within the African region based on geological–geophysical data. Geotektonika, (6), 98–108 (2021).
- Melanholina E. N., Sushchevskya N. M. Development of passive volcanic margins of the Central Atlantic and initial opening of ocean. Geotektonika, (1), 86–106 (2015). doi: 10.7868/S0016853X15010038
- Migdisova N. A., Sobolev A. V., Sushchevskya N. M., Dubinin E. P., Kuzmin D. V. Mantle heterogeneity at the Bouvet triple junction based on the composition of olivine phenocrysts. Geology and Geophysics, 58, (11), 1633–1648 (2017). doi: 10.15372/GiG20171102
- Peive A.A, Skolotnev S. G. Specific features of basalts from the western part of Andrew Bain Fault, Southwest Indian Ridge. DAN. 477 (4), 441–447 (2017). doi: 10.7868/S0869565217340126
- Sushchevskya N. M., Dmitriev L. V., Sobolev A. V. Petrochemical criterion for classification of quenching glasses of oceanic tholeiites. DAN USSR. 268 (6), 953–961 (1983).
- Sushchevskya N. M., Cehonya T. I., Dubinin E. P., Mirlin E. G., Kononkova N. N. Formation of Oceanic Crust in Mid-Ocean Ridges of the Indian Ocean. Geochemistry, 34 (10), 963–975 (1996).
- Sushchevskya N. M., Bonatti E., Peive A. A., Kameneckii V. C., Belyackii B. V., Cehonya T. I., Kononkova N. N.Heterogeneity of Rift Magmatism in the Equatorial Province of the Mid-Atlantic Ridge (15° N to 3° S). Geochemistry, 40 (1), 26–50 (2002).
- Sushchevskya N. M., Belyackii B. V., Dubinin E. P., Cehonya T. I., Mihal'skii E.B., Leichenkov G. L. Geochemical Heterogeneity of Tholeiitic Magmatism in Circum-Antarctic Rift Zones. Geochemistry, 41 (8), 727–740 (2003).
- Sushchevskaya N. M., Migdisova N. A., Belyatskii B. V., Peyve A. A. Genesis of Enriched Tholeiitic Magmas in the Western Segment of the Southwest Indian Ridge, South Atlantic Ocean (2003), Geochem. Int., 41 (1), 1–20 (2003).
- Sushchevskaya N. M., Kamenetsky V. S., Belyatsky B. V., and Artamonov A. V. Geochemical Evolution of Indian Ocean Basaltic Magmatism, Geochem. Int., 51 (8), 509–622 (2013).
- Cuschevskaya N. M., Koptev-Dvornikov E. V., Peive A. A., Hvorov D. M., Belyackii B. V., Kameneckii V. S., Migdisova N. A., Skolotnev S. G. Features of the processed of crystallization and geochemistry of tholeiite magmas of the Western end of African-Antarctic Ridge (shpiss Ridge) in the area of Bouve triple junction. Russian Journal of Earth Sciences, 1 (3). 221–250 (1999).
- Sushchevskaya N. M., Dubinin E. P., Shcherbakov V. D., Belyatsky B. V., and Zhilkina A. V. Generation of Tholeiitic Magmas in the Interaction Zone of Evolving Ridge, Fracture Zone, and Plume: Evidence from Basalts in 332B Hole, DSDP Leg 37, North Atlantic. Geochem. Int., 59 (10), 903–921 (2021).
- Sushchevskaya N. M., Leitchenkov G. L., Belyatsky B. V., Zhilkina A. V. Evolution of the Karoo-Maud plume and formation of Mesozoic igneous provinces in Antarctica. Geochem. Int., 60 (6), 509–529 (2022). Russian Text © The Author(s), 2022, published in Geokhimiya, 2022, Vol. 6.
- Armienti P., Longo P. Three-dimensional representation of geochemical data from a multidimensional compositional space. Intern. J. Geosci., 2 (3), 231–239 (2011). doi: 10.4236/ijg.2011.23025
- Bernard A., Munshy M., Rotstein Y., Sauter D. Refined spreading history at the Southwest Indian Ridge for the last 96 Ma, with the aid of satellite gravity data. Geophys. J. Int., 162 (3), 765–778 (2005). doi: 10.1111/j.1365-246X.2005.02672.x
- Bonatti E., Seyler M., Sushevskaya N. A. Cold suboceanic mantle belt at the Earth's Equator. Science, 261 (5119), 315–320 (1993). doi: 10.1126/science.261.5119.31
- Borisova A.Yu., Belyatsky B. V., Portnyagin M. V., and Suschevskaya N. M. Petrogenesis of an olivine-phyric basalts from the Aphanasey Nikitin Rise: evidence for contamination by cratonic lower continental crust. J. Petrology, 42 (2), 277–319 (2001). doi: 10.1093/petrology/42.2.277
- Breton T., François N., Sylvainichat, Moinea B., Moreirad M., Rose-Kogaa E. F., Auclaira D., Bosqa Ch., Wavranta L–M. Geochemical heterogeneities within the Crozet hotspot. Earth Planet. Sci. Lett., 376, 126–136 (2013). doi: 10.1016/j.epsl.2013.06.020
- Brunelli D., Ciprani A., Bonatti E. Thermal effects of pyroxenites on mantle melting below Mid- Ocean Ridges. Nature Geoscience, 11, 520–525 (2018). doi: 10.1038/s41561-018-0139-z
- Burke K., Steinberger B., Torsvik T. H., Smethurst M. A. Plume generation zones at the margins of large low shear velocity provinces on the core-mantle boundary. Earth Planet. Sci. Lett., 265 (1–2), 49–60 (2008). doi: 10.1016/j.epsl.2007.09.042
- Chuan-Zhou L., Henry J. B. Dick, Ross N. Mitchell1, Wu W., Zhen-Yu Zh., Albrecht W. Hofmann, Jian-Feng Y., Yang L. Archean cratonic mantle recycled at a mid-ocean ridge. Sci. Adv., 8 (22), (2022). doi: 10.1126/sciadv.abn674
- Coogan L. A., Saunders A. D., Wilson R. N. Aluminium-in-olivine thermometry of primitive basalts: Evidence of an anomalously hot mantle source for large igneous provinces. Chemical Geology, 368, 1–10 (2014). doi: 10.1016/j.chemgeo.2014.01.004
- Davaille A., Romanowicz B. Deflating the LLSVPs: bundles of mantle thermochemical plumes rather than thick stagnant “piles”. Tectonics, 39 (10), e2020TC006265 (2020). doi: 10.1029/2020TC006265.
- Dick H. J.B., Lin J., Schouten H. An ultraslow-spreading class of ocean ridge. Nature 426, 405–412 (2003). doi: 10.1038/nature02128
- Gale A., Langmuir Ch. H. and Coolleen A., Dalton C. A. The Global Systematics of Ocean Ridge Basalts and their Origin. J. Petrol, 55 (6), 1051–1082 (2014). doi: 10.1093/petrology/egu017
- Hamelin B. & Alle`gre C. J. Large-scale regional units in the depleted upper mantle revealed by an isotope study of the South-West Indian Ridge. Nature 315, 196–199 (1985). doi: 10.1038/315196a0
- Hofmann A. W. Chemical differentiation of the Earth: The relationship between mantle, continental crust, and oceanic crust. Earth Planet. Sci. Lett., 90. 297–314 (1988). doi: 10.1016/0012-821X(88)90132-X
- Hofmann A. W. Sampling Mantle Heterogeneity through Oceanic Basalts: Isotopes and Trace Elements. The Mantle and Core, 2, 61–101 (2003). doi: 10.1016/B0-08-043751-6/02123-X
- Homrighausen S., Hoernle K., Zhou H., Geldmacher J., Wartho J-A., Hauff F., Werner R., Jung S., Morgan J. P. Paired EMI-HIMU hotspots in the South Atlantic-Starting plume heads trigger compositionally distinct secondary plumes. Sci. Adv., 6 (28), eaba0282 (2020). doi: 10.1126/sciadv.aba0282
- Humphreys E. R., Niu Y. On the composition of ocean island basalts (OIB): The effects of lithospheric thickness variation and mantle metasomatism. Lithos, 112 (1–2), 118–136 (2009). doi: 10.1016/j.lithos.2009.04.038
- Janney P. E., Le Roex A. P. and Carson R. W. Hafnium isotope and trace element constrains on the nature of mantle heterogeneity beneath the Central Southwest Indian Ridge (13° E to 47° E). J. Petrol., 46 (12), 2427–2464 (2005). doi: 10.1093/petrology/egi060
- Jourdan F., Féraud G., Bertrand H., Watkeys M. K. From flood basalts to the inception of oceanization: example from the 40Ar/39Ar high-resolution picture of the Karoo large igneous province. Geochem. Geophys. Geosyst., 8 (2), 1–20 (2007). doi: 10.1029/2006GC001392
- Kalt A., Hegner E., Satir M. Nd, Sr, and Pb isotopic evedence for diverse lithospheric mantle source of East African Rift carbonatites. Tectonophysics, 278 (1–4), 31–45 (1977). doi: 10.1016/S0040-1951(97)00093-0
- Kamenetsky V. S. and Maas R. Mantle-melt evolution (dynamic source) in the origin of a single MORB suite: a perspective from magnesian glasses of Macquarie Island, J. Petrol., 43 (10), 1909–1922 (2002). doi: 10.1093/petrology/43.10.1909
- Kamenetsky V. S., Maas R., Sushchevskaya N. M., Norman M. D., Cartwright I., Peyve A. A. Remnants of Gondwan continental lithosphere in oceanic upper mantle: Evidence from the South Atlantic Ridge. Geology, 29 (3), 243–246 (2001). doi: 10.1130/0091-7613(2001)029<0243: ROGCLI>2.0.CO;2
- Kinzler R. L., Grove T. L. Primary magmas of mid-ocean ridge basalts, 2. Applications. J. Geophys. Res., 97 (B5), 6907–6926 (1992). doi: 10.1029/91JB02841
- Klein E. M., Langmuir C. H. Global correlations of ocean ridge basalt chemistry with axial depth and crustal thickness. J. Geophys. Res., 92 (B8), 8089–8115 (1987). doi: 10.1029/JB092iB08p08089
- Klein E. M. & Langmuir C. H. Local versus global variations in ocean ridge basalt composition: A reply. J. Geophys. Res 94 (B4), 4241–4252 (1989). doi: 10.1029/JB094iB04p04241
- Le Roex A. P., Dick H. J.B., Watkins R. T. Petrogenesis of anomalous K-enriched MORB from the Southwest Indian Ridge: 11.53°E to 14.38°E. Contrib. Mineral. Petrol., 110 (2), 253–268 (1992). doi: 10.1007/BF00310742
- Le Roex A. P., Dick H. J.B., Erlank A. J., Reid A. M., Frey F. A. and Hart S. R. Geochemistry, mineralogy and petrogenesis of lavas erupted along the Southwest Indian Ridge between the Bouvet triple junction and 11 degrees east. J. Petrol., 24 (3), 267–318 (1983). doi: 10.1093/petrology/24.3.267
- Mahoney J. J., le Roex A. P., Peng Z., Fisher R. L. & Natland J. H. Southwestern limits of Indian Ocean Ridge mantle and the origin of low 206Pb/204Pb mid-ocean ridge basalts: isotope systematics of the Southwest Indian Ridge (17°–50°E). J. Geophys. Res., 97 (B13), 19771–19790 (1992). doi: 10.1029/92JB01424
- Marks K. and Tikku A. A. Cretaceous reconstruction of East Antarctica, Africa and Madagascar. Earth Planet. Sci. Lett., 186 (3–4), 479–395 (2001). doi: 10.1016/S0012-821X(01)00262-X
- Nosova A. A., Sazonova L. V., Kargin A. V., Smirnova M. D., Lapin A. V., Shcherbakov V. D. Olivine in ultramafic lamprophyres: chemistry, crystallisation, and melt sources of Siberian Pre-and post-trap aillikites. Contrib. Mineral. Petrol., 173 (7), 55 (2018). doi: 10.1007/s00410-018-1480-3
- Sauter S., Cannat M., Meyzen C., Bezos A., Patriat P., Humler E. and Debayle E. Propagation of a meltinganomaly along the ultraslow Southwest Indian Ridge between 46°E and 52 °20′ E: interaction with the Crozet hotspot. Geophys. J. Int., 179 (2), 687–699 (2009). doi: 10.1111/j.1365-246X.2009.04308.x
- Schilling J.-G. Fluxes and excess temperatures of mantle plumes inferred from their interaction with migrating mid-ocean ridges. Nature, 352 (6334), 397–403 (1991). doi: 10.1038/352397a0
- Schwindrofska A., Hoernle K., Hauff F., van den Bogaard P., Werner R., Garbe-Schonberg D. Origin of enriched components in the South Atlantic: Evidence from 40Ma geochemical zonation of the Discovery Seamounts. Earth Planet. Sci. Lett., 441, 167–177 (2016). doi: 10.1016/j.epsl.2016.02.041
- Sigurdsson H. & Schilling J.-C. Spinels in Mid-Atlantic Ridge basalts: Chemistry and occurrence. Earth Planet. Sci. Lett., 29 (1), 7–20 (1976). doi: 10.1016/0012-821X(76)90021-2
- Sobolev A. V., Dmitriev L. V. Primary melts of tholeiites of oceanic rifts (TOR): Evidence from studies of primitive glasses and melt inclusions in minerals. Abstracts IGC. Washington D. C., 147 (1989).
- Sobolev A. V., Hofmann A. W., Kuzmin D. V., Yaxley G. M., Arndt N. T., Chung S., Danyushevsky L. V., Elliott T., Frey F. A., Garcia M. O., Gurenko A. A., Kamenetsky V. S., Kerr A. C., Krivolutskaya N. A., Matvienkov V. V., Nikogosian I. K., Rocholl A., Sigurdsson I. A., Sushchevskaya N. M., Teklay M. The amount of recycled crust in sources of mantle-derived melts. Science, 316 (5823), 412 (2007). doi: 10.1126/science.1138113
- Sun S.-S., McDonough W. F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Magmatism in the ocean basins. Eds. Suanders A. D., Norry M. J., Geol. Soc. Spec. Publ., 42, 313–345 (1989). doi: 10.1144/GSL.SP.1989.042.01.19
- Sushchevskaya N. M., Tsekhonya T. I., Mirlin E. G. Comparision of the mechanisms of generation andfractionation of tholeiitic melts in Indian-Atlantic and Pacific rifting zones. Experiment in Geosciences, 5 (1), 7–9 (1996).
- Torsvik T. H., Smethurst M. A., Burke K., Steinberger B. Large igneous provinces generated from the margins of the large low-velocity provinces in the deep mantle. Geophys. J. Int., 167 (3), 1447–1460 (2006).doi: 10.1111/j.1365-246X.2006.03158.x
- Wan Z., Coogan L. A., Canil D. (2008) Experimental calibration of aluminum partitioning between olivine and spinel as a geothermometer. Am. Mineral., 93 (7), 1142–1147. doi: 10.2138/am.2008.2758м
Supplementary files
