Isotopic (δ13C, δ18O) Analysis of Small Amounts of Carbonate in Silicate Rocks by the Continuous Flow Isotope Ratio Mass Spectrometry Method

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

An experimental study of the main factors affecting the accuracy of oxygen and carbon isotopic analysis in carbonates dispersed in silicate matrix is carried out. Artificial 1, 2, 5, and 10% mixtures of quartz with carbonates with different isotopic parameters (KH-2, Ko, MCA-8) were analyzed by continuous flow isotope ratio mass spectrometry (CF IRMS). It is established that, in addition to the influence of the instrumental nonlinearity, the results are affected by two factors: trace amounts of CO2, constantly present in the system (the blank effect) and the presence of chemically neutral silicate particles (the matrix effect). The blank effect depends on the isotopic parameters of the sample and has very little influence on the estimated carbonate content in the rock. The matrix effect, on the contrary, strongly affects the estimated carbonate content, and produces the isotopic shift towards underestimated contents of heavy 13C and 18O isotopes. It is shown that this effect is related to the processes occurring near the CO2–acid–quartz interface, which are accompanied by kinetic fractionation of carbon and oxygen isotopes. Both effects are dependent on the amount of silicate matrix in the system and most clearly manifested during analysis of carbonate-poor rocks. When the carbonate content in the rock is about 1–2%, deviations from the true δ13C and δ18O values can reach the first ppm, while carbonate content obtained by chromatographic peak calibration can be underestimated by 20–40%.

About the authors

E. O. Dubinina

Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry, Russian Academy of Sciences

Email: elenadelta@gmail.com
119017, Moscow, Russia

Yu. N. Chizhova

Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry, Russian Academy of Sciences

Email: elenadelta@gmail.com
119017, Moscow, Russia

S. A. Kossova

Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry, Russian Academy of Sciences

Author for correspondence.
Email: elenadelta@gmail.com
119017, Moscow, Russia

References

  1. Дубинина Е.О., Носова А.А., Авдеенко А.С. и др. (2010) Изотопная (Sr, Nd, O) систематика высоко-Sr-Ba гранитоидов позднемиоценовых интрузивов района Кавказских Минеральных Вод. Петрология. 18(3), 227-256.
  2. Дубинина Е.О., Филимонова Л.Г., Коссова С.А. (2019) Изотопные (δ34S, δ13C, δ18O) характеристики вкрапленной минерализации магматических пород Дукатского рудного поля (Северо-Восток России). Геология рудных месторождений. 61(1), 39-51.
  3. Al-Aasm I.S., Taylor, B.E., South B. (1990) Stable isotope analysis of multiple carbonate samples using selective acid extraction. Chem. Geol. (Isot. Geosci. Sect.). 80, 119-125.
  4. Alt J.C., Shanks W.C. III. (2006) Stable isotope compositions of serpentinite seamounts in the Mariana forearc: Serpentinization processes, fluid sources and sulfur metasomatism. Earth and Planetary Science Letters. 242, 272-285.
  5. Bastrikov V., Steen-Larsen H., Masson-Delmotte V., Gribanov K., Cattani O., Jouzel J., Zakharov V. (2014) Continuous measurements of atmospheric water vapour isotopes in western Siberia (Kourovka). Atmospheric Measurement Techniques. 7. https://doi.org/10.5194/amt-7-1763-2014
  6. Baudrand M., Aloisi G., Lécuyer C., Martineau F., Fourel F., Escarguel G., Blanc-Valleron M.-M., Rouchy J.-M., Grossi V. (2012) Semi-automatic determination of the carbon and oxygen stable isotope compositions of calcite and dolomite in natural mixtures. Applied Geochemistry. 27, 257-265.
  7. Bottinga, Y. (1968) Calculation of fractionation factors for carbon and oxygen isotopic exchange in the system calcite-carbon dioxide-water. J. Phys. Chem. 72, 800-808.
  8. Brand W. (1996) High precision isotope ratio monitoring techniques in mass spectrometry. Journal of mass spectrometry. 31(3), 225-35.
  9. Brand W.A. (2004) Mass Spectrometer Hardware for Analyzing Stable Isotope Ratios. In Handbook of Stable Isotope. Analytical Techniques (Eds. de Groot P.A.). Amsterdam: Elsevier, 835-858.
  10. Breitenbach S.F.M., Bernasconi S.M. (2011) Carbon and oxygen isotope analysis of small carbonate samples (20 to 100 μg) with a Gas-Bench II preparation device. Rapid Commun. Mass Spectrom. 25(13), 1910-1914.
  11. Burman J., Gustafsson O., Segl M., Schmitz B. (2005) A simplified method of preparing phosphoric acid for stable isotope analyses of carbonates. Rapid Commun. Mass Spectrom. 19(21), 3086-3088.
  12. Chacko T., Deines P. (2008) Theoretical calculation of oxygen isotope fractionation factors in carbonate systems. Geochim. Cosmoch. Acta. 72(15), 3642-3660.
  13. Du Y., Song H. (2020) Refined protocol for δ13C analysis of calcite and dolomite in carbonate mixture samples. Rapid Commun Mass Spectrom. 34(10). https://doi.org/10.1002/rcm.8743
  14. ESRL Global Monitoring Division (NOAA ESRL GMD), https://www.esrl.noaa.gov/gmd/
  15. Fiebig J., Schöne B., Oschmann W. (2005) High-precision oxygen and carbon isotope analysis of very small (10–30 µg) amounts of carbonates using continuous flow isotope ratio mass spectrometry. Rapid Commun Mass Spectrom. 19(16), 2355-2358.
  16. Finnigan Gasbench II Operating Manual. (2004) Thermo Electron Corporation: Bremen, Germany.
  17. Galimov E.M. (1991) Isotope fractionation related to kimberlite magmatism and diamond formation. Geochim. Cosmoch. Acta. 55, 1697-1708.
  18. Giuliani A., Phillips D., Kamenetsky V.S., Fiorentini M.L., Farquhar J., Kendrick M.A. (2014) Stable isotope (C, O, S) compositions of volatile-rich minerals in kimberlites: A review. Chemical Geology. 374-375, 61-83.
  19. Gruber N., Keeling C.D., Bacastow R.B., Guenther P.R., Lueker T.J., Wahlen M., Meijer H.A.J., Mook W.G., Stocker T.F. (1999) Spatiotemporal patterns of carbon-13 in the global surface oceans and the oceanic Suess effect. Global Biogeochem. Cycles. 13(2), 307-335.
  20. Jacob H., Sonntag C. (1991) An 8-year record of the seasonal variation of 2H and 18O in atmospheric water vapour and precipitation at Heidelberg, Germany. Tellus B. 43, 291-300.
  21. Liu X., Deng W., Wei G. (2018) Carbon and oxygen isotopic analyses of calcite in calcite-dolomite mixtures: Optimization of selective acid extraction. Rapid Commun Mass Spectrom. 33. https://doi.org/10.1002/rcm.8365
  22. McCrea J.M. (1950) On the Isotopic Chemistry of Carbonates and a Paleotemperature Scale. Journal of Chemical Physics. 18, 849-857.
  23. Nelson S.T. (2000) Sample vial influences on the accuracy and precision of carbon and oxygen isotope ratio analysis in continuous flow mass spectrometric applications. Rapid Commun Mass Spectrom. 14(4), 293-297.
  24. Paul D., Skrzypek G., Fórizs I. (2007) Normalization of measured stable isotopic compositions to isotope reference scales – a review. Rapid Commun Mass Spectrom. 21(18), 3006-3014.
  25. Paul D., Skrzypek G. (2007) Assessment of carbonate-phosphoric acid analytical technique performed using GasBench II in continuous flow isotope ratio mass spectrometry. International Journal of Mass Spectrometry. 262, 180–186.
  26. Paul D., Skrzypek G. (2006) Flushing time and storage effects on the accuracy and precision of carbon and oxygen isotope ratios of sample using the Gasbench II technique. Rapid Commun. Mass Spectrom. 20, 2033-2040.
  27. Révész K., Landwehr J. (2002) δ13C and δ18O isotopic composition of CaCO3 measured by continuous flow isotope ratio mass spectrometry: Statiscal evaluation and verification by application to Devils Hole core DH-11 calcite. Rapid Commun Mass Spectrom. 16, 1012-2114.
  28. Rosenbaum J.M., Sheppard S.M. (1986) An isotopic study of siderites, dolomites and ankerites at high temperatures. Geochim. Cosmoch. Acta. 50, 1147-1150.
  29. Skrzypek G., Paul D. (2006) Delta13C analyses of calcium carbonate: Comparison between the GasBench and elemental analyzer techniques. Rapid Commun Mass Spectrom. 20, 2915-20.
  30. Spötl C., Vennemann T. (2003) Continuous-flow isotope ratio mass spectrometric analysis of carbonate minerals. Rapid Commun Mass Spectrom. 17, 1004-1006.
  31. Sreenivasan S., Bera M.K., Samanta A. (2023) A simple but improved protocol for measuring carbon and oxygen isotope ratios of calcite in calcite-dolomite mixtures. Applied Geochemistry. 150, 105600. https://doi.org/10.1016/j.apgeochem.2023.105600
  32. Velivetskaya T., Ignatiev A., Gorbarenko S. (2009) Carbon and oxygen isotope microanalysis of carbonate. Rapid Commun Mass Spectrom. 23, 2391-2397.
  33. Wachter E.A., Hayes J.M. (1985) Exchange of oxygen isotopes in carbon dioxide-phosphoric acid systems. Isot Geosci. 52, 365-374.
  34. Walters L.J., Claypool G.E., Choquette P.W. (1972) Reaction rates and δ18O variation for the carbonate-phosphoric acid preparation method. Geochim. Cosmochim. Acta. 36, 129-140.
  35. Werner R.A., Brand W.A. (2001) Referencing strategies and techniques in stable isotope ratio analysis. Rapid Commun Mass Spectrom. 15(7), 501-519.
  36. Yong D., Song H. (2020) Refined protocol for the δ13C analysis of calcite and dolomite in carbonate mixture samples. Rapid Commun Mass Spectrom. 34. https://doi.org/10.1002/rcm.8743
  37. Zha X.-P., Gong B., Zheng Y.-F., ChenY.-X. (2017) Precise carbon isotopic ratio analyses of micro amounts of carbonate and non - carbonate in basalt using continuous – flow isotope ratio mass spectrometry. Rapid Commun Mass Spectrom. 32, 48-56.
  38. Zha X.-P., Zhao Y.-Y., Zheng Y.-F. (2010) An online method combining a Gasbench-II with continuous flow isotope ratio mass spectrometry to determine the content and isotopic compositions of minor amount of carbonate in silicate rocks. Rapid Commun Mass Spectrom. 24, 2217-2226.
  39. Zhao Z.-F., Zheng Y.-F., Wei C.-S., Gong B. (2001) Carbon concentration and isotope composition of granites from Southeast China. Physics and Chemistry of the Earth Parts A/B/C. 26, 821-833.
  40. Zheng Y.-F., Gong B., Li Y., Wang Z., Fu B. (2000) Carbon concentrations and isotopic ratios of eclogites from the Dabie and Sulu terranes in China. Chemical Geology. 168, 291-305.
  41. Zheng Y.-F., Gong B., Zhao Z.-F., Fu B., Li Y.-L. (2003) Two types of gneisses associated with eclogite at Shuanghe in the Dabie terrane: Carbon isotope, zircon U-Pb dating and oxygen isotope. Lithos. 70, 321-343.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (3MB)
3.

Download (170KB)
4.

Download (100KB)
5.

Download (119KB)
6.

Download (173KB)
7.

Download (65KB)
8.

Download (102KB)
9.

Download (33KB)
10.

Download (92KB)

Copyright (c) 2023 Е.О. Дубинина, Ю.Н. Чижова, С.А. Коссова

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».