Differentiated Estimation of the 137Cs Content on the Biogenic and Lithogenic Suspended Matter in the Black Sea

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Sedimentation transport of 137Cs can lead to the significant accumulation of this radionuclide at depths that could not be reached through the vertical water exchange alone; therefore, a comparative assessment of its contents for different types of suspended matter (SM) and regions of the Black Sea is of particular interest. For this purpose, we have collected samples of SM and seawater at deep-water and coastal stations for the subsequent determination of the 137Cs activity in the surface water layer. To calculate the fraction of lithogenic matter, the potassium content in the SM was additionally determined. The range of 137Cs content on SM at different stations differed by more than an order of magnitude: from 7 to 111 Bq/kg for specific activity, and from 0.03 to 0.69% for its content on SM, in % of the total content in the surface water layer. Stations located farther away from the coast were characterized by the lowest percentage of 137Cs in SM, while its content at the coastal stations was more variable. The comparison of the lithogenic and biogenic contribution to SM and data on 137Cs for different stations suggests that the content of this radionuclide on SM is primarily determined by the dynamic variations of the lithogenic matter. Based on the 137Cs migration on SM, the Black Sea is divided into at least two types of regions. One regions are water areas far removed from sources of lithogenic matter where SM is formed mainly due to the hydrobiont activity. The 137Cs content in SM due to the predominance of biogenic matter and an insignificant concentration of lithogenic matter in this case accounts for hundredths of a percent of its total content in the surface water layer. Other regions are coastal and shelf water basins, which, on the one hand, are subjected to the significant coastal and river lithogenic runoff, and on the other, they are characterized by the elevated trophicity and biological productivity. In these water areas, 137Cs content on SM owing to the variability of biotic and abiotic factors is more variable and can fluctuate from values typical for the open sea to an order of magnitude higher.

About the authors

I. G. Sidorov

A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS

Email: oksaniya_89@mail.ru
Russia, 299011 Sevastopol, Nakhimov Avenue, 2

O. N. Miroshnichenko

A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS

Email: oksaniya_89@mail.ru
Russia, 299011 Sevastopol, Nakhimov Avenue, 2

V. Yu. Poskurnin

A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS

Email: oksaniya_89@mail.ru
Russia, 299011 Sevastopol, Nakhimov Avenue, 2

A. A. Paraskiv

A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS

Author for correspondence.
Email: oksaniya_89@mail.ru
Russia, 299011 Sevastopol, Nakhimov Avenue, 2

References

  1. Виноградов А.П. (1962) Средние содержания химических элементов в главных типах изверженных горных пород земной коры. Геохимия. (7), 555-571.
  2. Гавшин В.М., Лапухов С.В., Сараев С.В. (1988) Геохимия литогенеза в условиях сероводородного заражения (Черное море). Новосибирск: Наука, 194 с.
  3. Гулин С.Б., Егоров В.Н, Мирзоева Н.Ю., Проскурнин В.Ю., Бей О.Н., Сидоров И.Г. (2017) Радиоемкость кислородной и сероводородной зон Черного моря в отношении 90Sr и 137Cs. Радиационная биология. Радиоэкология. 57(2), 191-200.
  4. Гулин С.Б., Сидоров И.Г., Поповичев В.Н. (2019) Сезонная динамика биоседиментации и первичной продукции в Севастопольской бухте: оценка взаимосвязи с использованием 234Th и 40K. Биология моря. 45, 171-176.
  5. Дунаева А.Н., Мироненко М.В. (2000) Сорбция цезия некоторыми глинистыми минералами. Геохимия. (2), 213-221
  6. Егоров В.Н., Гулин С.Б., Поповичев В.Н., Костова С.К., Гулина Л.В., Малахова Л.В., Малахова Т.В., Плотицына О.В., Мирзоева Н.Ю., Терещенко Н.Н., Лазоренко Г.Е., Проскурнин В.Ю., Сидоров И.Г., Стецюк А.П., Марченко Ю.Г. (2013) Биогеохимические механизмы формирования критических зон в отношении загрязняющих веществ в Черном море. Морской экологический журнал. 12(4), 5-26.
  7. Егоров В.Н., Поликарпов Г.Г., Кулебакина Л.Г., Стокозов Н.А., Евтушенко Д.Б. (1993) Модель крупномасштабного загрязнения Черного моря долгоживущими радионуклидами цезием–137 и стронцием–90 в результате аварии на ЧАЭС. Водные ресурсы. 20(3), 326-330.
  8. Иванов В.В. (1994) Книга 1: s-элементы. Экологическая геохимия элементов: Справочник: в 6 кн. (Под ред. Э. К. Буренкова). М.: Недра, 304 с.
  9. Касаткина, Н.Е., (2008) Адсорбция радионуклидов цезия на донных отложениях и оценка радиоэкологической ситуации в бассейнах Баренцева и Азовского морей (дис. канд. хим. наук: 03.00.16). Иваново.
  10. Козловский Е.А. (1991) Горная энциклопедия. Т. 1–5. М.: Советская энциклопедия, 541 с.
  11. Матишов Д.Г. (2001) Радиационная экологическая океанология. Апатиты: Изд-во КНЦ РАН, 417 с.
  12. Митропольский А.Ю., Безбородов А.А., Овсяный Е.И. (1982) Геохимия Черного моря. К.: Наукова думка, 144 с.
  13. Никитин А.И., Мединец В.И., Чумичев В.Б., Катрич И.Ю., Вакуловский С.М., Козлов А.И., Лепешкин В.И. (1988) Радиоактивное загрязнение Черного моря вследствие аварии на ЧАЭС по состоянию на октябрь 1986 г. Атомная энергия. 65(2), 134-137.
  14. Перельман А.И. (1972) Геохимия элементов в зоне гипергенеза. М.: Недра, 424 с.
  15. Cнегирева О.В. (1969) Юрская система, Средний отдел. Геология СССР. Т. 8. Крым. Часть 1. Геологическое описание (Под ред. М.В. Муратова). М.: Недра, 99-114.
  16. Стокозов Н.А., Гулин С.Б., Мирзоева Н.Ю. (2008) Содержание 137Cs и 90Sr на взвешенном веществе и в донных отложениях Черного моря после аварии на Чернобыльской АЭС. Радиоэкологический отклик Черного моря на чернобыльскую аварию (Под ред. Г.Г. Поликарпова и В.Н. Егорова). Севастополь: ЭКОСИ-Гидрофизика, 519-547.
  17. Aston S.R., Duursma E.K. (1973) Concentration effects on 137Cs, 65Zn, 60Co and 106Ru sorption by marine sediments with geochemical implications. Netherlands J. Sea Research. 6(1–2), 225-240.
  18. Brumsack H.-J. (2006) The trace metal content of recent organic carbon-rich sediments: implications for Cretaceous black shale formation. Palaeogeogr. Palaeoclimatol. Palaeoecol. 232(2–4), 344-361
  19. Buesseler K.O., Livingston H.D., Honjo S., Hay B.J., Konuk T., Kempe S. (1990) Scavenging and particle deposition in the southern Black Sea – evidence from Chernobyl radiotracers. Deep–Sea Res. 37(3), 413-430.
  20. Comans R.N., Haller M., Preter P.D. (1991) Sorption of cesium on illite: Nonequilibrium behavior and reversibility. Geochim. Cosmochim. Acta. 55(2), 433-440.
  21. Cremers A., Elsen A., Preter P.De, Maes A. (1988) Quantitative analysis of radiocaesium retention in soils. Nature. 335(6187), 247-336.
  22. Dumat C. (1999) Reduced adsorption of caesium on clay minerals caused by various humic substances. J. Environ. Radioact. 46, 187-195
  23. Durrant C.B., Begg J.D., Kersting A.B., Zavarin M. (2018) Cesium sorption reversibility and kinetics on illite, montmorillonite, and kaolinite. Sci. Total Environ. 610, 511-520.
  24. Duursma E.K. (1996) Environmental compartments: equilibria and assessment of processes between air, water, sediments and biota. E.K. Duursma, J. Carroll. Berlin: Springer, 280 p.
  25. Fuller A.J., Shaw S., Ward M.B., Haigh S.J., Mosselmans J.F.W., Peacock C.L., Stackhouse, S., Dent A.J., Trivedi D., Burke I.T. (2015) Caesium incorporation and retention in illite interlayers. Appl. Clay Sci. 108, 128-134.
  26. Gulin S.B., Egorov V.N., Duka M.S., Sidorov I.G., Proskurnin V.Yu., Mirzoyeva N.Yu., Bey O.N., Gulina L.V. (2015) Deep-water profiling of 137Cs and 90Sr in the Black Sea. A further insight into dynamics of the post-Chernobyl radioactive contamination. J. Radioanal. Nucl. Ch. 304(2), 779-783.
  27. Gulin S.B., Mirzoyeva N.Yu., Egoron V.N., Polikarpov G.G., Sidorov I.G., Proskurnin V.Yu. (2013) Secondary radioactive contamination of the Black Sea after Chernobyl accident: recent levels, pathways and trends. J. Environ. Radioact. 124, 50-56.
  28. Gulin S.B., Gulina L.V., Sidorov I.G., Proskurnin V.Yu., Duka M.S., Moseichenko I.N., Rodina E.A. (2014) 40K in the Black Sea: a proxy to estimate biogenic sedimentation. J. Environ. Radioact. 134, 21-26.
  29. Gulin S.B., Polikarpov G.G., Egorov V.N., Korotkov A.A., Stokozov N.A., Martin J.M. (2001) Radioactive contamination of the north-western Black Sea sediments. Estuar. Coast. Shelf Sci. 54(3), 541-549.
  30. Hay B.J., Arthur M.A., Dean W.E., Neff E.D., Honjo S. (1991) Sediment deposition in the Late Holocene abyssal Black Sea with climatic and chronological implications. Deep Sea Research Part A. Oceanographic Research Papers. 38(suppl. 2), 1211-1236.
  31. International Atomic Energy Agency (1985) Sediment KdS and Concentration Factors for Radionuclides in the Marine Environment. Technical Report Series. (247). IAEA, 74 p.
  32. Kim Y., Cho S., Kang H.-D., Kim W., Lee H.-R., Doh S.-H., Kim K., Yun S.-G., Kim D.-S., Jeong G.Y. (2006) Radiocesium reaction with illite and organic matter in marine sediment. Mar. Pollut. Bull. 52(6), 659-665.
  33. Lammers L.N., Bourg I.C., Okumura M., Kolluri K., Sposito G., Machida M. (2017) Molecular dynamics simulations of cesium adsorption on illite nanoparticles. J. Colloid and Interface Science. 490, 608-620.
  34. Livingston H.D. (1988) The use of Cs and Sr izotopes as tracers in the Arctic Mediterranean Seas. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences. 325(1583), 161-176.
  35. Lujanienė G., Vilimaitė-Šilobritienė B., Jokšas K. (2003) Effect of coatings on caesium sorption-desorption behavior in bottom sediments. Environmental and Chemical Physics. 25(3), 129-135.
  36. Martinez N.C., Murray R.W., Thunell R.C., Peterson L.C., Muller-Karger F., Astor Y., Varela R. (2007) Modern climate forcing of terrigenous deposition in the tropics (Cariaco Basin, Venezuela). Earth Planet. Sci. Lett. 264(3–4), 438-451.
  37. Miroshnichenko O.N., Paraskiv A.A., Gulin S.B. (2019) Cesium-137 Concentration in the Surface Waters of Eurasian Seas: Evidence from the Expedition Research of 2017. Geochem. Int. 57(12), 1349-1354.
  38. Polikarpov G.G., Kulebakina L.G., Timoshchuk V.I., Stokozov N.A. (1991) 90Sr and 137Cs in surface waters of the Dnepr River, the Black Sea and the Aegean Sea in 1987 and 1988. J. Environ. Radioact. 13(1), 25-28.
  39. Sawhney B.L. (1972) Selective sorption and fixation of cations by clay minerals: A review. Clays and Clay Minerals. 20(2), 93-100.
  40. Sidorov I.G., Tereshchenko N.N., Korotkov A.A., Chuzhikova-Proskurnina O.D., Hiep N.T., Trapeznikov A.V. (2022) 137Cs, 40K and 210Po in abiotic components of aquatic ecosystems two rivers in the Can Gio biosphere reserve, Vietnam. Nuclear Engineering and Technology. (Available online 6 July 2022) https://doi.org/10.1016/j.net.2022.07.005
  41. Turekian K.K., Wedepohl K.H. (1961) Distribution of the elements in some major units of the Earth’s crust. Geol. Soc. Am. Bull. 72(2), 175-192.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (847KB)
3.

Download (41KB)
4.

Download (51KB)
5.

Download (43KB)

Copyright (c) 2023 И.Г. Сидоров, О.Н. Мирошниченко, В.Ю. Проскурнин, А.А. Параскив

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies