Thermodynamic Properties of Coquimbite and Aluminocoquimbite

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Coquimbite AlFe3+3[SO4]6(H2O)12⋅6H2O (sample from the Javier Mine, Peru) has been studied by thermal and electron microprobe analysis, X-ray powder diffraction, Raman spectroscopy, and Mössbauer spectroscopy. The enthalpy of formation of the coquimbite from elements ∆fH0(298.15 K) = −11 118 ± 40 kJ/mol was determined by the method of solution calorimetry in melt of lead borate 2PbO∙B2O3 on a Setaram (France) Calvet microcalorimeter. The value of its absolute entropy S0(298.15 K) = 1248.3 ± 3.0 J/(mol K) was estimated, the entropy of formation ∆fS0(298.15 K) = − 5714.0 ±3.0 J/mol K), and the Gibbs energy of formation from elements ∆fG0(298.15 K) = −9411 ± 40 kJ/mol were calculated. The values of the enthalpy and Gibbs energy of formation of aluminocoquimbite Al2Fe3+2[SO4]6(H2O)12⋅6H2O from elements were estimated at −11 540 ± 29 and −9830 ± 29 kJ/mol, respectively.

Sobre autores

Yu. Gritsenko

Geological Faculty, Lomonosov Moscow State University; Fersman Mineralogical Museum, Russian Academy of Sciences

Email: ygritsenko@rambler.ru
119991, Moscow, Russia; 119692, Moscow, Russia

L. Ogorodova

Geological Faculty, Lomonosov Moscow State University

Email: logor48@mail.ru
119991, Moscow, Russia

M. Vigasina

Geological Faculty, Lomonosov Moscow State University

Email: logor48@mail.ru
119991, Moscow, Russia

D. Kosova

Chemical Faculty, Lomonosov Moscow State University

Email: logor48@mail.ru
119991, Moscow, Russia

S. Dedushenko

NUST MISIS

Email: logor48@mail.ru
119049, Moscow

L. Melchakova

Geological Faculty, Lomonosov Moscow State University

Email: logor48@mail.ru
119991, Moscow, Russia

D. Ksenofontov

Geological Faculty, Lomonosov Moscow State University

Autor responsável pela correspondência
Email: logor48@mail.ru
119991, Moscow, Russia

Bibliografia

  1. Киселева И.А. (1976) Термодинамические свойства и устойчивость пиропа. Геохимия. (6), 845-854.
  2. Киселева И.А., Огородова Л.П., Топор Н.Д., Чигарева О.Г. (1979) Термохимическое исследование системы СаО–MgO–SiO2. Геохимия. (12), 1811-1825.
  3. Котельников А.Р., Кабалов Ю.К., Зезюля Т.Н., Мельчакова Л.В., Огородова Л.П. (2000) Экспериментальное изучение твердого раствора целестин-барит. Геохимия. (12), 1286-1293.
  4. Kotel’nikov A.R., Kabalov Yu.K., Zezyulya T.N., Mel’chakova L.V., Ogorodova L.P. (2000) Experimental study of celestine-barite solid solution. Geochem. Int. (12), 1181-1187.
  5. Наумов Г.Б., Рыженко Б.Н., Ходаковский И.Л. (1971) Справочник термодинамических величин (для геологов). М.: Атомиздат. 239 с.
  6. Огородова Л.П., Киселева И.А., Мельчакова Л.В., Вигасина М.Ф., Спиридонов Э.М. (2011) Калориметрическое определение энтальпии образования пирофиллита. ЖФХ. (9), 1609-1611.
  7. Ackermann S., Lazic B., Armbruster T., Doyle S., Grevel K.-D., Majzlan J. (2009) Thermodynamic and crystallographic properties of kornelite [Fe2(SO4)3 ~ 7.75H2O] and paracoquimbite [Fe2(SO4)3·9H2O]. Am. Mineral. 94, 1620-1628.
  8. Dedushenko S.K., Perfiliev Yu.D. (2022) On the correlation of the 57Fe Mössbauer isomer shift and some structural parameters of a substance Hyperfine Interactions. 243, № 15.
  9. Demartin F., Castellano C., Gramaccioli C.A., Campostrini I. (2010a) Aluminum-for-iron substitution, hydrogen bonding, and a novel structure-type in coquimbite-like minerals. Canad. Mineral. 48, 323-333.
  10. Demartin F., Castellano C., Gramaccioli C.A., Campostrini I. (2010b) Aluminocoquimbite, AlFe (SO4)3·9H2O, a new aluminum iron sulfate from Grotta Dell’allume, Vulcano, Aeolian Islands, Italy. Canad. Mineral. 48, 1465-1468.
  11. Dyar M.D., Jawin E.R., Breves E., Marchand G., Nelms M., Lane M.D., Mertzman S.A., Bish D.L., Bishop J.L. (2014) Mössbauer parameters of iron in phosphate minerals: Implications for interpretation of martian data. Am.Mineral. 99, 914-942.
  12. Fang J.H., Robinson P.D. (1970) Crystal structure and mineral chemistry of hydrated ferric sulfates. I. The crystal structure of coquimbite. Am. Mineral. 55, 1534-1540.
  13. Frost R.L., Gobac Ž.Ž., López A., Xi Y., Scholz R., Lana C., Lima R.M.F. (2014) Characterization of the sulphate mineral coquimbite, a secondary iron sulphate from Javier Ortega mine, Lucanas Province, Peru – Using infrared, Raman spectroscopy and thermogravetry. J. Mol. Struct. 1063, 251-258.
  14. Hemingway B., Seal R.R., II, Chou I.-M. (2002) Thermodynamic data for modeling acid mine drainage problems: Compilation and estimation of data for selected soluble iron-sulfate minerals. U.S. Geol. Survey, Open-File Report, 02-161, 13 p.
  15. IMA list of minerals. http://cnmnc.main.jp/IMA_Master_ List_(2021-11).pdf.
  16. Majzlan J., Navrotsky A., McCleskey R.B., Alpers C.N. (2006) Thermodynamic properties and crystal structure refinement of ferricopiapite, coquimbite, rhomboclase, and Fe2(SO4)3(H2O)5. Eur. J. Mineral.
  17. Majzlan J., Dordevié T., Kolitsch U. (2010) Hydrogen bonding in coquimbite, nominaly Fe2(SO4)3⋅9H2O, and the relationship between coquimbite and paracoquimbite. Miner. Petrol. 100, 241-248.
  18. Majzlan J., Alpers C.N., Koch C.B., McCleskey R.B., Myneni S.C.B., Neil J.M. (2011) Vibrational, X-ray absorption, and Mőssbauer spectra of sulfate minerals from the weathered massive sulfide deposit at Iron Mountain, California. Chem. Geol. 284, 296-305.
  19. Mauro D., Biagioni C., Pasero M., Skogby H., Zaccarini F. (2020) Redefinition of coquimbite, Al Fe3(SO4)6(H2O)12⋅6H2O. Mineral. Magaz. 84, 275-282.
  20. Ogorodova L.P., Melchakova L.V., Kiseleva I.A., Belitsky I.A. (2003) Thermochemical study of natural pollucite. Thermochim. Acta 403, 251–256.
  21. Poitras J.T., Cloutis E.A., Salvatore M.R., Mertzman S.A., Applin D.M., Mann P. (2018) Mars analog minerals’ spectral reflectance characteristics under Martian surface conditions. Icarus. 306, 50-73.
  22. Robie R.A., Hemingway B.S. (1995) Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (105 pascals) pressure and at higher temperatures. U S Geol. Surv. Bull. 2131.
  23. Robinson P.D., Fang J.H. (1971) Crystal structure and mineral chemistry of hydrated ferric sulfates. II. The crystal structure of paracoquimbite. Am. Mineral. 56, 1567-1572.
  24. Turenne N., Parkinson A., Applin D.M., Mann P., Cloutis E.A., Mertzman S.A. (2022) Spectral reflectance properties of minerals exposed to Martian surface conditions: Implications for spectroscopy-based mineral detection on Mars. Planet. Space Sci. 210, 105377.
  25. www.happysloth.ru: Левин Д.М., Дедушенко С.К. Программа для ЭВМ “Happy Sloth”. Реестр программ для ЭВМ. № 2016660090.
  26. Yang Z., Giester G. (2018) Structure refinement of coquimbite and paracoquimbite from the Hongshan Cu–Au deposit, NW China. Eur.J. Mineral. 30, 849-858.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (157KB)
3.

Baixar (51KB)
4.

Baixar (156KB)
5.

Baixar (71KB)

Declaração de direitos autorais © Ю.Д. Гриценко, Л.П. Огородова, М.Ф. Вигасина, Д.А. Косова, С.К. Дедушенко, Л.В. Мельчакова, Д.А. Ксенофонтов, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies