Transfer of Metals under Hydrothermal Conditions in the Form of Colloidal Particles and Supersaturated True Solutions

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Colloids of metals have been studied much more poorly in hydrothermal solutions than in surface and underground waters. Nevertheless, literature data indicate that colloidal particles containing metals are present in hydrothermal minerals, in geogas, in groundwaters above orebodies, in fluid inclusions of minerals, and in geothermal solutions. These particles are usually thought to be formed at nucleation in supersaturated solution, which is generated in conversion reactions of minerals or when fluids boil. Published experimental data confirm that colloidal particles can be formed and preserved in hydrothermal conditions. Experimental data on the filtration of supersaturated and colloidal solutions in porous media at elevated temperatures are still too scarce to enable a comprehensive and reasonably accurate assessment of the mobility of colloidal particles under these conditions. The involvement of colloids in the hydrothermal ore-forming process is most clearly manifested at formation of rich epithermal Au deposits. The example of a quartz geothermometer is employed to demonstrate that metals can be transferred in true supersaturated solution, and this mechanism may be even more efficient than colloidal transfer. Metals can thus be transferred in the hydrothermal process in significantly higher concentrations than it follows from the traditional approach based on equilibrium thermodynamics.

Sobre autores

V. Alekseyev

Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences

Autor responsável pela correspondência
Email: alekseyev-v@geokhi.ru
Russia, 119991 Moscow, Kosygina str., 19

Bibliografia

  1. Алексеев В.А. (1997) Кинетические особенности действия Na/K геотермометра. Геохимия. (11), 1128-1138.
  2. Алексеев В.А. (2019) Наночастицы и нанофлюиды при взаимодействиях вода–порода. Геохимия. 64(4), 343-355.
  3. Alekseyev V.A. (2019) Nanoparticles and Nanofluids in Water–Rock Interactions. Geochem Int. 57(4), 357-368.
  4. Алешин А.П., Козырьков В.Д., Смирнов К.М., Комаров Вл.Б., Ивенченко М.М., Комаров Вик.Б., Грибоедова И.Г. (2016) Уран-титан-метагелевая минерализация золотоурановых месторождений Эльконского рудного района (Алдан) и особенности ее технологического передела. Изв. вузов. Геология и разведка. (4), 50-57.
  5. Дину М.И., Шкинев В.М. (2020) Комплексообразование ионов металлов с органическими веществами гумусовой природы: методы исследования и структурные особенности лигандов, распределение элементов по формам. Геохимия. 65(2), 165-177.
  6. Dinu M.I., Shkinev V.M. (2020) Complexation of Metal Ions with Organic Substances of Humus Nature: Methods of Study and Structural Features of Ligands, and Distribution of Elements between Species Geochem Int. 58(2), 200-211.
  7. Дымков Ю.М., Салтыков А.С., Колпаков Г.А., К-ринов Д.И., Алёшин А.П., Хорозова О.Д., Прокопчик В.И. (2014) Метаколлоидные пирит-настурановые прожилки богатых гидротермальных руд Далматовского уранового месторождения (Зауралье, Россия). Новые данные о минералого-геохимических особенностях, возрасте их формирования и источниках урана. Геохимия. (5), 414-431.
  8. Dymkov Yu.M., Saltykov A.S., Kolpakov G.A., Krinov D.I., Aleshin A.P., Khorozova O.D., Prokopchik V.I. (2014) Metacolloid Pyrite–Pitchblende Veinlets of High-Grade Hydrothermal Ores at the Dalmatovskoe Uranium Deposit, Transural Region, Russia: New Data on the Mineralogy, Geochemistry, Age, and Uranium Sources Geochem Int. 52(5), 372-387.
  9. Иванеев А.И., Ермолин М.С., Федотов П.С. (2021) Разделение, характеризация и анализ нано- и микрочастиц окружающей среды: современные методы и подходы. Журн. аналитической химии. 76(4), 291-312.
  10. Карасева О.Н., Иванова Л.И., Лакштанов Л.З. (2019) Адсорбция стронция на оксиде марганца (δ-MnO2) при повышенных температурах: эксперимент и моделирование. Геохимия. 64(10), 1091-1104.
  11. Karaseva O.N., Ivanova L.I., Lakshtanov L.Z. (2019) Strontium Adsorption on Manganese Oxide (δ-MnO2) at Elevated Temperatures: Experiment and Modeling. Geochem Int. 57(10), 1107-1119.
  12. Моисеенко Т.И., Дину М.И., Гашкина Н.А., Кремлева Т.А. (2013) Формы нахождения металлов в природных водах в зависимости от их химического состава. Водные ресурсы. 40(4), 375-385.
  13. Набоко С.И. (1959) Вулканические эксгаляции и продукты их реакций. М.: АН СССР. 301 с.
  14. Набоко С.И., Сильниченко В.Г. (1957) Образование силикагеля на сольфатарах вулкана Головнина на острове Кунашир. Геохимия. (3), 253-256.
  15. Abdelali A., Nezli I.E., Kechiched R., Attalah S., Benhamida S.A., Pang Z. (2020) Geothermometry and geochemistry of groundwater in the Continental Intercalaire aquifer, southeastern Algeria: Insights from cations, silica and SO4–H2O isotope geothermometers. Appl. Geochem. 113, art. No. 104 492.
  16. Adrian Y.F., Schneidewind U., Bradford S.A., Šimůnek J., Klumpp E., Azzam R. (2019) Transport and retention of engineered silver nanoparticles in carbonate-rich sediments in the presence and absence of soil organic matter. Environ. Pollut. 255, art. No. 113 124.
  17. Arnórsson S. (1975) Application of the silica geothermometer in low temperature hydrothermal areas in Iceland. Am. J. Sci. 275(7), 763-784.
  18. Baalousha M., Lead J.R., Ju-Nam Y. (2011) Natural colloids and manufactured nanoparticles in aquatic and terrestrial systems. Treatise on Water Sci. 3, 89-129.
  19. Bai B., Nie Q., Zhang Y., Wang X., Hu W. (2021) Cotransport of heavy metals and SiO2 particles at different temperatures by seepage. J. Hydrol. 597, art. No 125771.
  20. Banks D.A., Bozkaya G., Bozkaya O. (2019) Direct observation and measurement of Au and Ag in epithermal mineralizing fluids. Ore Geol. Rev. 111, art. No 102955.
  21. Barton I. (2019) The effects of temperature and pressure on the stability of mineral colloids. Amer. J. Sci. 319(9), 737-753.
  22. Bin G., Cao X., Dong Y., Luo Y., Ma L.Q. (2011) Colloid deposition and release in soils and their association with heavy metals. Crit. Rev. Environ. Sci. Technol. 41(4), 336-372.
  23. Cao J., Hu R., Liang Z., Peng Z. (2009) TEM observation of geogas-carried particles from the Changkeng concealed gold deposit, Guangdong Province, South China. J. Geochem. Explor. 101(3), 247-253.
  24. Carroll S., Mroczek E., Alai M., Ebert M. (1998) Amorphous silica precipitation (60 to 120°C): Comparison of laboratory and field rates. Geochim. Cosmochim. Acta, 62(8), 1379-1396.
  25. Chukhrov, F.V. (1966) Present views on colloids in ore formation. Int. Geol. Rev. 8(3), 336-345.
  26. Clark J.R., Williams-Jones A.E. (1990) Analogues of epithermal gold-silver deposition in geothermal well scales. Nature. 346(6285), 644-645.
  27. Cline J.S., Bodnar R.J., Rimstidt J.D. (1992) Numerical simulation of fl uid fl ow and silica transport and deposition in boiling hydrothermal solutions; application to epithermal gold deposits. J. Geophys. Res. 97(B6), 9085-9103.
  28. Cotte L., Waeles M., Pernet–Coudrier B., Sarradin P.-M., Cathalot Cé., Riso R.D. (2015) A comparison of in situ vs. ex situ filtration methods on the assessment of dissolved and particulate metals at hydrothermal vents. Deep-Sea Res. Part I Oceanogr. Res. Pap. 105, 186-194.
  29. Cui X., Fan Y., Wang H., Huang S. (2019) Effects of temperature on the transport of suspended particles through sand layer during groundwater recharge. Water Air Soil Pollut. 230(10), art. No. 251.
  30. Deditius A.P., Utsunomiya S., Reich M., Kesler S.E., Ewing R.C., Hough R., Walshe J. (2011) Trace metal nanoparticles in pyrite. Ore Geol. Rev. 42(1), 32-46.
  31. Degueldre C., Triay I., Kim J.-I., Vilks P., Laaksoharju M., Miekeley N. (2000) Groundwater colloid properties: A global approach. Appl. Geochem. 15(7), 1043-1051.
  32. Dixit C. (2014) Etude physico-chimique des fluides produits par la centrale géothermique de Bouillante (Guadeloupe) et des dépôts susceptibles de se former au cours de leur refroidissement. Ph.D. Thesis. Antilles-Guyane University, France (254 p).
  33. Dixit C., Bernard M.-L., Sanjuan B., André L., Gaspard S. (2016) Experimental study on the kinetics of silica polymerization during cooling of the Bouillante geothermal fluid (Guadeloupe, French West Indies). Chem. Geol. 442, 97-112.
  34. Doucet F.J., Lead J.R., Santschi P.H. (2007) Colloid-trace element interactions in aquatic systems. In: Environmental Colloids and Particles: Behaviour, Separation and Characterisation (eds. K.J. Wilkinson and J.R. Lead). IUPAC. P. 95-157.
  35. Durán-Toro V.M., Price R.E., Maas M., Brombach C.-C., Pichler T., Rezwan K., Bühring S.I. (2019) Amorphous arsenic sulfide nanoparticles in a shallow water hydrothermal system. Mar. Chem. 211, 25-36.
  36. Findlay A.J., Gartman A., Shaw T.J., Luther G.W., III (2015) Trace metal concentration and partitioning in the first 1.5m of hydrothermal vent plumes along the Mid-Atlantic Ridge: TAG, Snakepit, and Rainbow. Chem. Geol. 412, 117-131.
  37. Flury M., Aramrak, S. (2017) Role of air-water interfaces in colloid transport in porous media: A review. Water Resour. Res. 53(7), 5247-5275.
  38. Fournier R.O., Potter R.W. (1982) A revised and expanded silica (quartz) geothermometer. Geotherm. Resour. Council. Bull. 11, 3-12.
  39. Fournier R.O., Rowe J.J. (1966) Estimation of underground temperatures from the silica content of water from hot springs and wet-steam wells. Am. J. Sci. 264(9), 685-697.
  40. Fowler A.P.G., Ferguson C., Cantwell C.A., Zierenberg R.A., McClain J., Spycher N., Dobson P. (2018) A conceptual geochemical model of the geothermal system at Surprise Valley, CA. J. Volcanol. Geotherm. Res. 353, 132-148.
  41. Franchini M., McFarlane C., Maydagán L., Reich M., Lentz D.R., Meinert L., Bouhier V. (2015) Trace metals in pyrite and marcasite from the Agua Rica porphyry-high sulfidation epithermal deposit, Catamarca, Argentina: Textural features and metal zoning at the porphyry to epithermal transition. Ore Geol. Rev. 66, 366-387.
  42. Frondel C. (1938) Stability of colloidal gold under hydrothermal conditions. Econ. Geol. 33(1), 1-20.
  43. Gartman A., Findlay A.J., Luther G.W. (2014) Nanoparticulate pyrite and other nanoparticles are a widespread component of hydrothermal vent black smoker emissions. Chem. Geol. 366, 32-41.
  44. Gartman A., Hannington M., Jamieson J.W., Peterkin B., Garbe-Schönberg D., Findlay A.J., Fuchs S., Kwasnitschka T. (2018) Boiling-induced formation of colloidal gold in black smoker hydrothermal fluids. Geology. 46(1), 39-42.
  45. Gartman A., Findlay A.J., Hannington M., Garbe-Schönberg D., Jamieson J.W., Kwasnitschka T. (2019) The role of nanoparticles in mediating element deposition and transport at hydrothermal vents. Geochim. Cosmochim. Acta. 261, 113-131.
  46. Gavrilescu M. (2014) Colloid-mediated transport and the fate of contaminants in soils. In: The Role of Colloidal Systems in Environmental Protection (ed. M. Fanun). Elsevier. 397-451.
  47. González-Jiménez J.M., Yesares L., Piña R., Sáez R., de Almodóvar G.R., Nieto F., Tenorio S. (2022) Polymetallic nanoparticles in pyrite from massive and stockwork ores of VMS deposits of the Iberian Pyrite Belt. Ore Geol. Rev. 145, art. No. 104875.
  48. Glover R.B., Mroczek E.K. (1998) Changes in silica chemistry and hydrology across the Rotorua Geothermal Field, New Zealand. Geothermics. 27(2), 183-196.
  49. Hamilton A.R., Campbell K.A., Rowland J.V., Barker S., Guido D. (2019) Characteristics and variations of sinters in the Coromandel Volcanic Zone: application to epithermal exploration. New Zealand J. Geol. Geophys. 62(4), 531-549.
  50. Hannington M., Garbe-Schönberg D. (2019) Detection of gold nanoparticles in hydrothermal fluids. Econ. Geol. 114(2), 397-400.
  51. Hannington M., Hardardóttir V., Garbe-Schönberg D., Brown K.L. (2016) Gold enrichment in active geothermal systems by accumulating colloidal suspensions. Nat. Geosci. 9(4), 299-302.
  52. Helgeson H.C., Murphy W.M., Aagaard P. (1984) Thermodynamic and kinetic constaints on reaction rates among minerals and aqueous solutions. II: Rate constants, effective surface area, and the hydrolysis of feldspar. Geochim. Cosmochim. Acta. 48(12), 2405-2432.
  53. Hoffman C.L., Nicholas S.L., Ohnemus D.C., Fitzsimmons J.N., Sherrell R.M., German C.R., Heller M.I., Lee J.-M., Lam P.J., Toner B.M. (2018) Near-field iron and carbon chemistry of non-buoyant hydrothermal plume particles, Southern East Pacific Rise 15° S. Mar. Chem. 201, 183-197.
  54. Huang Y.-H., Liu H.-L., Song S.-R., Chen H.-F. (2018) An ideal geothermometer in slate formation: A case from the Chingshui geothermal field, Taiwan. Geothermics. 74, 319-326.
  55. Icopini G.A., Brantley S.L., Heaney P.J. (2005) Kinetics of silica oligomerization and nanocolloid formation as a function of pH and ionic strength at 25°C. Geochim. Cosmochim. Acta. 69(2), 293-303.
  56. Iler R.K. (1979) The Chemistry of Silica: Solubility, Polymerization, Colloid and Surface Properties and Biochemistry of Silica. N.Y.: Wiley.
  57. Kai B., Xiaojun N., Weimin W., Xiaojun W., Yu P., Panchal B. (2020) Application of geothermal thermometric scale in the study of deep reservoir temperature. Energy Explor. Exploit. 38(6), 2618-2630.
  58. Kanimozhi B., Rajkumar P., Kumar R.S., Mahalingam S., Thamizhmani V., Selvakumar A., Ravikumar S., Kesavakumar R., Pranesh V. (2021) Kaolinite fines colloidal-suspension transport in high temperature porous subsurface aqueous environment: Implications to the geothermal sandstone and hot sedimentary aquifer reservoirs permeability. Geothermics. 89, art. No. 101975.
  59. Karasyova O.N., Ivanova L.I., Lakshtanov L.Z., Lövgren L. (1999) Strontium sorption on hematite at elevated temperatures. J. Colloid Interface Sci. 220(2), 419-428.
  60. Kawahara Y., Fukuda D., Togoh F., Osada K., Maetou K., Kato O., Yokoyama T., Itoi R., Myogan I. (2012) Laboratory experiments on prevention and dissolution of silica deposits in a porous column (1): Solid deposition due to silica particle aggregation and inhibition by acid dosing. Trans. Geotherm. Resour. Counc. 36(2), 867-870.
  61. Lakshtanov L.Z., Stipp S.L.S. (2010) Interaction between dissolved silica and calcium carbonate: 1. Spontaneous precipitation of calcium carbonate in the presence of dissolved silica. Geochim. Cosmochim. Acta. 74(9), 2655-2664.
  62. Liu X., Cao J., Li Y., Hu G., Wang G. (2019a) A study of metal-bearing nanoparticles from the Kangjiawan Pb-Zn deposit and their prospecting significance. Ore Geol. Rev. 105, 375-386.
  63. Liu W., Chen M., Yang Y., Mei Y., Etschmann B., Brugger J., Johannessen B. (2019b) Colloidal gold in sulphur and citrate-bearing hydrothermal fluids: An experimental study. Ore Geol. Rev. 114, art. No. 103142.
  64. Liu X., Liu R., Chen G., Luo X., Lu M. (2020a) Natural HgS nanoparticles in sulfide minerals from the Hetai goldfield. Environ. Chem. Lett. 18(3), 941-947.
  65. Liu X., Cao J., Dang W., Lin Z., Qiu J. (2020b) Nanoparticles in groundwater of the Qujia deposit, eastern China: Prospecting significance for deep-seated ore resources. Ore Geol. Rev. 120, art. No. 103417.
  66. Luo S., Cao J., Yan H., Yi J. (2015) TEM observations of particles based on sampling in gas and soil at the Dongshengmiao polymetallic pyrite deposit, Inner Mongolia, Northern China. J. Geochem. Explor. 158, 95-111.
  67. Marinova I., Ganev V., Titorenkova R. (2014) Colloidal origin of colloform-banded textures in the Paleogene low-sulfidation Khan Krum gold deposit, SE Bulgaria. Miner. Deposita. 49(1), 49-74.
  68. McLeish D.F., Williams-Jones A.E., Vasyukova O.V., Clark J.R., Board W.S. (2021) Colloidal transport and flocculation are the cause of the hyperenrichment of gold in nature. Proc. Natl. Acad. Sci. USA. 118(20), art. No. e2100689118.
  69. Mroczek E., Graham D., Siega C., Bacon L. (2017) Silica scaling in cooled silica saturated geothermal water: Comparison between Wairakei and Ohaaki geothermal fields, New Zealand. Geothermics. 69, 145-152.
  70. Mroczek E.K., White S.P., Graham D.J. (2000) Deposition of amorphous silica in porous packed beds – predicting the lifetime of reinjection aquifers. Geothermics. 29(6), 737-757.
  71. Oehler J.H. (1976) Hydrothermal crystallization of silica gel. Bull. Geol. Soc. Am. 87(8), 1143-1152.
  72. Ohsawa S., Kawamura T., Takamatsu N., Yusa Y. (2002) Rayleigh scattering by aqueous colloidal silica as a cause for the blue color of hydrothermal water. J. Volcanol. Geotherm. Res. 113(1–2), 49-60.
  73. Okamoto A., Saishu H., Hirano N., and Tsuchiya N. (2010) Mineralogical and textural variation of silica minerals in hydrothermal flow-through experiments: Implications for quartz vein formation. Geochim. Cosmochim. Acta. 74(13), 3692-3706.
  74. Park C.F., MacDiarmid R.A. (1964) Ore Deposits. Freeman, London.
  75. Prokofiev V.Y., Kamenetsky V.S., Selektor S.L., Rodemann T., Kovalenker V.A., Vatsadze S.Z. (2017) First direct evidence for natural occurrence of colloidal silica in chalcedony-hosted vacuoles and implications for ore-forming processes. Geology. 45(1), 71-74.
  76. Prokofiev V.Y., Banks D.A., Lobanov K.V., Selektor S.L., Milichko V.A., Akinfiev N.N., Borovikov A.A., Lüders V., Chicherov M.V. (2020) Exceptional concentrations of gold nanoparticles in 1.7 Ga fluid inclusions from the Kola superdeep borehole, Northwest Russia. Sci. Rep. 10(1), art. No. 1108.
  77. Rezaei A., Rezaeian M., Porkhial S. (2019) The hydrogeochemistry and geothermometry of the thermal waters in the Mouil Graben, Sabalan volcano, NW Iran. Geothermics. 78, 9-27.
  78. Rimstidt J.D., Barnes H.L. (1980) The kinetics of silica–water reactions. Geochim. Cosmochim. Acta. 44(11), 1683-1699.
  79. Roldughin V.I. (2000) Quantum-size colloid metal systems. Rus. Chem. Rev. 69(10), 821-843.
  80. Sasamoto H., Onda S. (2019) Preliminary results for natural groundwater colloids in sedimentary rocks of the horonobe underground research laboratory, Hokkaido, Japan. Geol. Soc. Spec. Publ. 482(1), 191-203.
  81. Saunders J.A., Burke M. (2017) Formation and aggregation of gold (Electrum) nanoparticles in epithermal ores. Minerals. 7(9), art. No. 163.
  82. Saunders J.A., Burke M., Brueseke M.E. (2020) Scanning-electron-microscope imaging of gold (electrum) nanoparticles in middle Miocene bonanza epithermal ores from northern Nevada, USA. Miner. Deposita. 55(3), 389-398.
  83. Sen T.K., Khilar K.C. (2006) Review on subsurface colloids and colloid-associated contaminant transport in saturated porous media. Adv. Colloid Interface Sci. 119(2–3), 71-96.
  84. Seward T.M., Williams-Jones A.E., Migdisov A.A. (2014) The chemistry of metal transport and deposition by ore-forming hydrothermal fluids. In: Treatise on Geochemistry (Eds. Holland H.D., Turekian K.K.). Elsevier. P. 29-57.
  85. Simmons S.F., Brown K.L., Tutolo B.M. (2016) Hydrothermal transport of Ag, Au, Cu, Pb, Te, Zn, and other metals and metalloids in New Zealand geothermal systems: Spatial Patterns, Fluid-mineral equilibria, and implications for epithermal mineralization. Econ. Geol. 111(3), 589-618.
  86. Sposito G. (2017) Surface complexation of metals by natural colloids. In: Ion Exchange and Solvent Extraction: A Series of Advances (eds. J.A. Marinsky, Y. Marcus). V. 11. Taylor & Francis. P. 211-236.
  87. Stewart B.D., Sorensen J.V., Wendt K., Sylvan J.B., German C.R., Anantharaman K., Dick G.J., Breier J.A., Toner B.M. (2021) A multi-modal approach to measuring particulate iron speciation in buoyant hydrothermal plumes. Chem. Geol. 560, art. No. 120018.
  88. Tamura R., Inoue H., Hanajima E., Ikeda R., Osaka Y., Yanaze T., Kusakabe M., Yonezu K., Yokoyama T., Tsukamoto K., Marumo K., Ueda A. (2019) In situ observations of silica nanoparticle growth in geothermal brine at the Sumikawa geothermal station, Japan, by dynamic light scattering. Geothermics. 77, 304-312.
  89. Tang Q., Di P., Yu M., Bao J., Zhao Y., Liu D., Wang Y. (2019) Mineralogy and geochemistry of pyrite and arsenopyrite from the Zaozigou gold deposit in West Qinling orogenic belt, central China: Implications for ore genesis. Resour. Geol. 69(3), 314-332.
  90. Verma M.P. (2000) Chemical thermodynamics of silica: A critique on its geothermometer. Geothermics. 29(3), 323-346.
  91. Wang C., Wang R., Huo Z., Xie E., Dahlke H.E. (2020) Colloid transport through soil and other porous media under transient flow conditions–A review. Wiley Interdiscip. Rev: Water. 7(4), art. No. e1439.
  92. Wang Y., Yu M., Bo Z., Bedrikovetsky P., Le-Hussain F. (2021) Effect of temperature on mineral reactions and fines migration during low-salinity water injection into Berea sandstone. J. Pet. Sci. Eng. 202, art. No. 108482.
  93. White D.E., Brannock W.W., Murata K.J. (1956) Silica in hot-spring waters. Geochim. Cosmochim. Acta. 10(1–2), 27-59.
  94. Williams L.A., Crerar D.A. (1985) Silica diagenesis, II. General mechanisms. J. Sediment. Petrol. 55(3), 312-321.
  95. Zavarin M., Zhao P., Joseph C., Begg J.D., Boggs M.A., Dai Z., Kersting A.B. (2019) Hydrothermal alteration of nuclear melt glass, colloid formation, and plutonium mobilization at the Nevada National Security Site, USA. Environ. Sci. Technol. 53(13), 7363-7370.
  96. Zhan L., Zhang Y., Zheng S., Zhang Y., Fan B., Li P., Zhang Y. (2019) Crystallization kinetics of ammonium polyvanadate. J. Cryst. Growth. 526, art. No. 125218.
  97. Zhang W., Tang X., Weisbrod N., Guan Z. (2012) A review of colloid transport in fractured rocks. J. Mount. Sci. 9(6), 770-787.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (45KB)
3.

Baixar (90KB)
4.

Baixar (72KB)
5.

Baixar (68KB)
6.

Baixar (86KB)
7.

Baixar (130KB)
8.

Baixar (41KB)
9.

Baixar (65KB)
10.

Baixar (119KB)

Declaração de direitos autorais © В.А. Алексеев, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies