Trace Elements in Olivine of Volcanic Rocks: Application to the Study of Magmatic Systems

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

A quantitative local analytical method with the application of inductively coupled plasma mass spectrometry with laser ablation (LA-ICP-MS) was tested at Vernadsky Institute for the determination of contents of trace elements (Cu, Zn, Co, Ni, Mn, Cr, Sc, V, Ca, Ti, Al, Y, and REE) in olivine. Olivine phenocrysts from volcanic rocks of various geological settings have been studied: island-arc basalts, mid-ocean ridge (MOR) basalts, and high-alkaline continental volcanic rocks. The contents of some elements (Ni, Co, Mn, Cr, Sc, and Zn) systematically vary during the evolution of the composition of olivine, and the concentration fields of these elements in olivine from different settings overlap one another. At the same time, the contents of some other elements (Ca, Al, Ti, V, and Cu) fundamentally differ in olivine from different geological settings. Copper content in olivine from oceanic tholeiites and highly alkaline continental volcanics is 1–3 ppm, which is systematically lower than copper content in olivine from island-arc basalts (3–9 ppm). The concentrations of vanadium in olivine in MOR basalts are higher than in island-arc and alkaline continental ones, which may be due to relatively more reduced crystallization conditions as more favorable for the incorporation of V3+ into the olivine structure. Variations in the distribution coefficients of trace elements between olivine and silicate melt (DOl/Melement) were determined for volcanic rocks from Kamchatka, the Bouvet Triple Junction, and Gaussberg volcano. It has been demonstrated that the unusually high values DOl/MNi of DOl/MNi = 50–150 previously identified for the lamproites of Gaussberg volcano indicate a mismatch between the composition of the quenched glass and the composition of the equilibrium melt for olivine phenocrysts. When using the bulk compositions of Gaussberg rocks, values of DOl/MNi = 11–21 were obtained, which correspond to experimental estimates for high-potassium rocks. The redox crystallization conditions of the studied rocks were estimated using several oxybarometers based on the distribution of vanadium between coexisting olivine and melt. These values were: ΔQFM= +0.6 to +1.5 for oceanic tholeiites of the Bouvet Triple Junction area, South Atlantic, and ΔQFM = +1.5 to +2.4 for Mutnovsky volcano, Kamchatka. Estimates of the redox crystallization conditions of the highly alkaline rocks of Gaussberg volcano significantly vary depending on which model is chosen: ΔQFM= +0.2 to +4.8, which may be due to the strong effect of K2O content in the melt involved in one of the models. The newly acquired analytical data confirmed the possibility of using contents of trace elements in olivine to characterize igneous systems from different geological settings and highlighted the need for additional experimental studies on the distribution of these elements between olivine and melt, especially in highly alkaline systems.

Авторлар туралы

T. Shishkina

Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences

Email: t.shishkina@geokhi.ru
ul. Kosygina 19, Moscow, 119991 Russia

M. Anosova

Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences

Email: t.shishkina@geokhi.ru
ul. Kosygina 19, Moscow, 119991 Russia

N. Midisova

Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences

Email: t.shishkina@geokhi.ru
ul. Kosygina 19, Moscow, 119991 Russia

M. Portnyagin

GEOMAR Helmholtz Centre for Ocean Research Kiel

Email: t.shishkina@geokhi.ru
Germany, 24148, Kiel, Wischhofstr. 1-3

N. Sushchevskaya

Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences

Email: t.shishkina@geokhi.ru
ul. Kosygina 19, Moscow, 119991 Russia

V. Batanova

Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, IRD, Univ. Gustave Eiffel, ISTerre

Хат алмасуға жауапты Автор.
Email: t.shishkina@geokhi.ru
France, 38000, Grenoble

Әдебиет тізімі

  1. Костицын Ю.А., Белоусова Е.А., Силантьев С.А., Бортников Н.С., Аносова М.О. (2015) Современные проблемы геохимических и U-Pb геохронологических исследований циркона в океанических Англ. версия породах. Геохимия. (9), 771-800.
  2. Kostitsyn Y.A., Belousova E.A., Silant’ev S.A., Bortnikov N.S., Anosova M.O. (2015) Modern problems of geochemical and U-Pb geochronological studies of zircon in oceanic rocks. Geochem. Int. 53(9), 759-785.
  3. Мигдисова Н.А., Соболев А.В., Сущевская Н.М., Дубинин Е.П., Кузьмин Д.В. Мантийная гетерогенность в районе тройного сочленения Буве по составам оливиновых вкрапленников. Геология и геофизика. 11, 1633-1648.
  4. Мигдисова Н.А., Сущевская Н.М., Портнягин М.В., Кузьмин Д.В., Батанова В.Г. (2023, в печати) Редкие элементы в минералах-вкрапленниках из лейцититовых лав вулкана Гауссберг, Восточная Антарктида. Геохимия. В печати.
  5. Migdisova N.A., Sushchevskaya N.M., Portnyagin M.V., Batanova V.G. (2023, in press) Rare Elements in Phenocrysts from Leucitite Lavas of Gaussberg Volcano, East Antarctica. Geochem Int. in press
  6. Николаев Г.С., Арискин А.А., Бармина Г.С., Назаров М.А., Альмеев Р.Р. (2016) Тестирование Ol–Opx–Sp оксибарометра Балльхауса–Берри–Грина и калибровка нового уравнения для оценки окислительного состояния расплавов, насыщенных оливином и шпинелидом. Геохимия. (4), 323-343.
  7. Nikolaev G.S., Ariskin A.A., Barmina G.S., Nazarova M.A., Almeev R.R. (2016) Test of the Ballhaus–Berry–Green Ol–Opx–Sp oxybarometer and calibration of a new equation for estimating the redox state of melts saturated with olivine and spinel. Geochem. Int. 54(4), 301-320.
  8. Плечова А.А., Портнягин М.В., Базанова Л.И. (2011) Происхождение и эволюция исходных магм фронтальных вулканов Камчатки по данным изучения магматических включений в оливине вулкана Жупановский. Геохимия. 8, 1-26.
  9. Plechova A.A., Portnyagin M.V., Bazanova L.I. (2011) The origin and evolution of the parental magmas of frontal volcanoes in Kamchatka: evidence from magmatic inclusions in olivine from Zhupanovsky volcano. Geochem. Int. 49(8), 787-812.
  10. Сущевская Н.М., Коптев-Дворников Е.В., Пейве А.А., Хворов Д.М., Беляцкий Б.В., Каменецкий В.С., Мигдисова Н.А., Сколотнев С.Г. (1999) Особенности процесса кристаллизации и геохимии толеитовых магм западного окончания Африкано-Антарктического хребта (хребет Шписс) в районе тройного сочленения Буве. Российский журн. наук о Земле. 1(3), 221-250.
  11. Сущевская Н.М., Мигдисова Н.А., Беляцкий Б.В., Пейве А.А. (2003) Образование обогащенных толеитовых магм в пределах западной части Африкано-Антарктического Хребта (Южная Атлантика). Геохимия. (1), 3-24.
  12. Sushchevskaya N.M., Migdisova N.A., Belyatskii B.V., Peyve A.A. (2003) Genesis of enriched tholeiitic magmas in the western segment of the Southwest Indian Ridge, South Atlantic Ocean. Geochem. Int. 41(1), 1-20.
  13. Сущевская Н.М., Мигдисова Н.А., Антонов А.В., Крымский Р.Ш., Беляцкий Б.В., Кузьмин Д.В., Бычкова Я.В. (2014) Геохимические особенности лампроитовых лав четвертичного вулкана Гауссберг (Восточная Антарктида) – результат влияния мантийного плюма Кергелен. Геохимия. (12), 1079-1098.
  14. Sushchevskaya N.M., Migdisova N.A., Antonov A.V., Krymsky R.S., Belyatsky B.V., Kuzmin D.V., Bychkova Y.V. (2014) Geochemical features of the quaternary lamproitic lavas of Gaussberg volcano, East Antarctica: result of the impact of the Kerguelen plume. Geochem. Int. 52(12), 1030-1048.
  15. Чащин А.А., Мартынов Ю.А., Перепелов А.Б., Екимова Н.И., Владимирова Т.П. (2011) Физико-химические условия формирования и эволюции позднеплейстоцен-голоценовых магм вулканов Горелый и Мутновский (Южная Камчатка). Тихоокеанская геология. 4(30), 87-108.
  16. Adam J., Green T. (2006) Trace element partitioning between mica and amphibole-bearing garnet lherzolite and hydrous basanitic melt: 1. Experimental results and the investigation of controls on partitioning behavior. Contrib. Mineral. Petrol. 152(1), 1-17.
  17. Audetat A., Pettke T. (2006) Evolution of a porphyry-Cu mineralized magma system at Santa Rita, New Mexico (USA). J. Petrol. 47(10), 2021-2046.
  18. Ballhaus C.G., Berry R.F., Green D.H. (1991) High pressure experimental calibration of the olivine-orthopyroxene-spinel oxygen geobarometer: implications for the oxidation state of the upper mantle. Contrib. Mineral. Petrol. 107, 27-40.
  19. Batanova V.G., Sobolev A.V., Kuzmin D.V. (2015) Trace element analysis of olivine: high precision analytical method for JEOL JXA-8230 electron probe microanalyser. Chem. Geol. 419, 149-157.
  20. Batanova V.G., Thompson J.M., Danyushevsky L.V., Portnyagin M.V., Garbe-Schönberg D., Hauri E., Kimura J.I., Chang Q., Senda R., Goemann K., Chauvel C., Campillo S., Ionov D.A., Sobolev A.V. (2019) New olivine reference material for in situ microanalysis. Geostand. Geoanal. Res. 419, 149-221.
  21. Beattie P. (1994) Systematics and energetics of trace-element partitioning between olivine and silicate melts: implications for the nature of mineral/melt partitioning. Chem. Geol. 117, 57–71.
  22. Bussweiler Y., Giuliani A., Greig A., Kjarsgaard B.A., Petts D., Jackson S.E., Barrett N., LuoY., Pearson D.G. (2019) Trace element analysis of high-Mg olivine by LA-ICP-MS – Characterization of natural olivine standards for matrix-matched calibration and application to mantle peridotites. Chem. Geol. 524, 136-157.
  23. Canil D., Fedortchouk Y. (2001). Olivine-liquid partitioning of vanadium and other trace elements, with applications to modern and ancient picrites. Can. Min. 39, 319-330.
  24. Canil D. (1997) Vanadium partitioning and the oxidation state of Archaean komatiite magmas. Nature. 389, 842-845.
  25. Canil D. (2002) Vanadium in peridotites, mantle redox and tectonic environments: Archean to present. Earth Planet. Sci. Lett. 195, 75-90.
  26. Cao Y., Wang C.Y., Wei B. (2020) Magma oxygen fugacity of mafic-ultramafic intrusions in convergent margin settings: Insights for the role of magma oxidation states on magmatic Ni-Cu sulfide mineralization. Am. Min. 105, 1841-1856.
  27. Coogan L.A., Saunders A.D., Wilson R.N. (2014) Aluminum-in-olivine thermometry of primitive basalts: Evidence of an anomalously hot mantle source for large igneous provinces. Chem. Geol. 368, 1-10.
  28. Danyushevsky L.V. (2001) The effect of small amounts of H2O on crystallisation of mid-ocean ridge and backarc basin magmas. J. Volcanol. Geotherm. Res. 110, 265-280.
  29. Danyushevsky L.V., Plechov P. (2011) Petrolog3: Integrated software for modeling crystallization processes. Geochem. Geophys. Geosyst. 12, https://doi.org/10.1029/2011GC003516
  30. De Hoog J.C.M. Gall L., Cornell D.H. (2010) Trace-element geochemistry of mantle olivine and application to mantle petrogenesis and geothermobarometry. Chem. Geol. 270, 196-215.
  31. Demouchy S., Alard O. (2021) Hydrogen, trace, and ultra‑trace element distribution in natural olivines. Contrib. Mineral. Petrol. 176(26).
  32. Duggen S., Portnyagin M., Baker J., Ulfbeck D., Hoernle K., Garbe-Schönberg, D., Grassineau N. (2007) Drastic shift in lava geochemistry in the volcanic-front to rear-arc region of the Southern Kamchatkan subduction zone: Evidence for the transition from slab surface dehydration to sediment melting. Geochim. Cosmochim. Acta. 71, 452-480.
  33. Evans T.M., O’Neill H.St.C., Tuff J. (2008) The influence of melt composition on the partitioning of REEs,Y, Sc, Zr and Al between forsterite and melt in the system CMAS. Geochim. Cosmochim. Acta. 72, 5708-5721.
  34. Fellows S.A., Canil D. (2012) Experimental study of the partitioning of Cu during partial melting of Earth’s mantle. Earth Planet. Sci. Lett. 337–338, 133-143.
  35. Foley S.F. Prelevic D., Rehfeldt T., Jacob D.E. (2013) Minor and trace elements in olivines as probes into early igneous and mantle melting processes. Earth Planet. Sci. Lett. 363, 181-191.
  36. Foley S.F., Jenner G.A. (2004) Trace element partitioning in lamproitic magmas – the Gaussberg olivine leucitite. Lithos. 75, 19-38.
  37. Foley S.F. (1985) The oxidation state of lamproitic magmas. Tschermak’s Mineral. Petrogr. Mitt. 34, 217-238.
  38. Ford C.E., Russel D.G., Graven J.A., Fisk M.R. (1983) Olivine-liquid equilibria: temperature, pressure and composition dependence of the crystal/liquid cation partition coefficients for Mg, Fe2+, Ca and Mn. J. Petr. 24, 256-265.
  39. Gaetani G.A., Watson E.B. (2000) Open system behavior of olivine-hosted melt inclusions. Earth Planet. Sci. Lett. 183, 27-41.
  40. Gaetani G.A., Grove T.L. (1997) Partitioning of moderately siderophile elements among olivine, silicate melt and sulfide melts: Constraints on core formation on the Earth and Mars. Geochim. Cosmochim. Acta. 32, 1057-1086.
  41. Gavrilenko M., Herzberg C., Vidito C., Carr M.J., Tenner T., Ozerov A. (2016) A calciumin-olivine geohygrometer and its application to subduction zone magmatism. J. Petrol. 57, 1811-1832.
  42. Herzberg C. (2011) Identification of Source Lithology in the Hawaiian and Canary Islands: Implications for Origins. J. Petrol., 52(1), 113-146.
  43. Jochum K.P., Nohl L., Herwig K., Lammel E., Stoll B., Hofmann A.W. (2005) GeoReM: A new geochemical database for reference materials and isotopic standards. Geostand. Geoanal. Res. 29, 333-338.
  44. Jochum K.P., Weis U., Stoll B., Kuzmin D., Yang Q., Raczek I., Jacob D.E., Stracke A., Birbaum K., Frick D.A. (2011) Determination of reference values for NIST SRM 610–617 glasses following ISO guidelines. Geostand. Geoanal. Res. 35, 397-429.
  45. Kamenetsky V.S., Zelenski M., Gurenko A., Portnyagin M., Ehrig K., Kamenetsky M., Churikova T., Feig S. (2017) Silicate-sulfide liquid immiscibility in modern arc basalt (Tolbachik volcano, Kamchatka): part II. Composition, liquidus assemblage and fractionation of the silicate melt. Chem. Geol. 471, 92-110.
  46. Korneeva A.A., Nekrylov N., Kamenetsky V., Portnyagin M., Krasheninnikov S.P., Savelyev D.P., Abersteiner A., Kamenetsky M., Zelensky M.E., Shcherbakov V. (2020) Composition, crystallization conditions and genesis of sulfide-saturated parental melts of olivine-phyric rocks from Kamchatsky Mys (Kamchatka, Russia). Lithos, 370–371, 105 657.
  47. Koshlyakova A., Sobolev A., Krasheninnikov S., Batanova V., Borisov A. (2022) Ni partitioning between olivine and highly alkaline melts: An experimental study. Chem. Geol. 587, 120615.
  48. Laubier M., Grove T.L., Langmuir C.H. (2014) Trace element mineral/melt partitioning for basaltic and basaltic andesitic melts: an experimental and laser ICP-MS study with application to the oxidation state of mantle source regions. Earth Planet. Sci. Lett. 392, 265-278.
  49. Lee C.-T.A., Luffi P., Chin E.J., Bouchet R., Dasgupta R., Morton D.M., Le Roux V., Yin Q-Z., Jin D. (2012) Copper Systematics in Arc Magmas and Implications for Crust-Mantle Differentiation. Science. 336(6077), 64-68.
  50. Li X., Zeng Z., Dan W., Yang H., Wang X., Fang B., Li Q. (2020) Source lithology and crustal assimilation recorded in low δ18O olivine from Okinawa Trough, back-arc basin. Lithos. 360–361, 105444.
  51. Liu X., Xiong X., Audetat A., Li Y., Song M., Li L., Sun W., Ding X. (2014) Partitioning of copper between olivine, orthopyroxene, clinopyroxene, spinel, garnet and silicate melts at upper mantle conditions. Geochim. Cosmochim. Acta. 125, 1-22.
  52. Locmelis M., Arevalo R.D., Puchtel I.S., Fiorentini M.L., Nisbet E.G. (2019) Transition metals in komatiitic olivine: Proxies for mantle composition, redox conditions, and sulfide mineralization potential. Amer. Miner. 104, 1143-1155.
  53. Mallmann G., O’Neill H.St.G. (2013) Calibration of an empirical thermometer and oxybarometer based on the partitioning of Sc, Y and V between olivine and silicate melt. J. Petrol. 54(5), 933-949.
  54. Mallmann G., O’Neill H.St.C. (2009) The crystal/melt partitioning of V during mantle melting as a function of oxygen fugacity compared with some other elements (Al, P, Ca, Sc, Ti, Cr, Fe, Ga, Y, Zr and Nb). J. Petrol. 50, 1765-1794.
  55. Matzen A.K., Baker M.B., Beckett J.R., Stolper E.M. (2013) The temperature and pressure dependence of nickel partitioning between olivine and silicate melt. J. Petrol. 54, 2521-2545.
  56. Migdisova N.A., Sobolev A.V., Sushchevskaya N.M., Dubinin E.P., Kuz’min D.V. (2017) Mantle heterogeneity at the Bouvet triple junction based on the composition of olivine phenocrysts. Rus. Geol. Geophys. 58(11), 1289-1304.
  57. Murphy D.T., Collerson K.D., Kamber B.S. (2002) Lamproites from Gaussberg, Antarctica: Possible Transition Zone Melts of Archaean Subducted Sediments. J. Petrol. 43(6), 981-1001.
  58. Neave D.A., Shorttle O., Oeser M., Weyer S., Kobayashi K. (2018) Mantle-derived trace element variability in olivines and their melt inclusions. Earth Planet. Sc. Lett. 483, 90-104.
  59. Nekrylov N., Popov D., Plechov P., Shcherbakov V., Danyushevsky L., Dirksen O.V. (2018) Garnet-pyroxenite-derived end-member magma type in Kamchatka: evidence from composition of olivine and olivine-hosted melt inclusions in Holocene rocks of Kekuknaisky volcano. Petrology. 26, 329-350.
  60. Nekrylov N., Kamenetsky V.S., Savelyev D.P., Gorbach N.V., Kontonikas-Charos A., Palesskii S.V., Shcherbakov V.D., Kutyrev A.V., Savelyeva O.L., Korneeva A.A., Kozmenko O.A., Zelenski M.E. (2022) Platinum-group elements in Late Quaternary high-Mg basalts of eastern Kamchatka: Evidence for minor cryptic sulfide fractionation in primitive arc magmas. Lithos. 412–413, 106608, https://doi.org/10.1016/j.lithos.2022.106608
  61. Nekrylov N., Popov D.V., Plechov P.Y., Shcherbakov V.D., Danyushevsky L.V. (2021) The origin of the Late Quaternary back-arc volcanic rocks from Kamchatka: evidence from the compositions of olivine and olivine-hosted melt inclusions. Contrib Mineral Petrol. 176, 71.
  62. Nikkola P., Guðfinnsson G.H., Bali E., Ramo O.T., Fusswinkel T., Thordarson T. (2019) Signature of deep mantle melting in South Iceland olivine. Contrib. Mineral. Petrol. 174, 43. https://doi.org/10.1007/s00410-019-1580-8
  63. Portnyagin M.V., Mironov N.L., Nazarova D.P. (2017) Copper partitioning between olivine and melt inclusions and its content in primitive island-arc magmas of Kamchatka. Petrology. 25, 419-432.
  64. Pu X., Lange R.A., Moore G. (2017) A comparison of olivine-melt thermometers based on DMg and DNi: the effects of melt composition, temperature, and pressure with applications to MORBs and hydrous arc basalts. Am. Mineral. 102(4), 750-765.
  65. Putirka K., Tao Y., Hari K.R., Perfit M.R., Jackson M.G., Arevalo R.Jr. (2018) The mantle source of thermal plumes: trace and minor elements in olivine and major oxides of primitive liquids (and why the olivine compositions don’t matter). Am. Mineral. 103, 1253-1270.
  66. Regelous M., Weinzierl C.G., Haase K.M. (2016) Controls on melting at spreading ridges from correlated abyssal peridotite – mid-ocean ridge basalt compositions. Earth Planet. Sci. Lett. 449, 1-11.
  67. Shishkina T.A., Portnyagin M.V., Botcharnikov R.E., Almeev R.R., Simonyan A.V., Garbe-Schönberg D., Schuth S., Oeser M., Holtz F. (2018) Experimental calibration and implications of olivine-melt vanadium oxybarometry for hydrous basaltic arc magmas. Am. Mineral. 103, 369-383.
  68. Shishkina, T.A. (2012) Storage conditions and degassing processes of low-K and high-Al tholeiitic island-arc magmas: Experimental constraints and natural observations for Mutnovsky volcano, Kamchatka, Ph.D. thesis. Leibniz University Hannover, 214 pp.
  69. Søager N., Portnyagin M., Hoernle K., Holm P.M., Hauff F., Garbe-Schönberg D. (2015) Olivine Major and Trace Element Compositions in Southern Payenia Basalts, Argentina: Evidence for Pyroxenite–Peridotite Melt Mixing in a Back-arc Setting. J. Petrol. 56(8), 1495-1518.
  70. Sobolev A.V., Asafov E.V., Gurenko A.A., Arndt N.T., Batanova V.G., Portnyagin M.V., Garbe-Schönberg, D., Krasheninnikov, S.P. (2016) Komatiites reveal an Archean hydrous deep-mantle reservoir. Nature. 531, 628-632.
  71. Sobolev A.V., Hofmann A.W., Kuzmin D.V., Yaxley G.M., Arndt N.T., Chung S.L., Danyushevsky L.V., Elliott T., Frey F.A., Garcia M.O., Gurenko A.A., Kamenetsky V.S., Kerr A.C., Krivolutskaya N.A., Matvienkov V.V., Nikogosian I.K., Rocholl A., Sigurdsson I.A., Sushchevskaya N.M., Teklay M. (2007) The amount of recycled crust in sources of mantle-derived melts. Science. 316, 412-417.
  72. Sobolev A.V., Hofmann A.W., Sobolev S.V., Nikogosian I.K. (2005) An olivine-free mantle source of Hawaiian shield basalts. Nature. 434, 590-597.
  73. Spandler C., O’Neill H.St.C., Kamenetsky V.S. (2007) Survival times of anomalous melt inclusions: constraints from element diffusion in olivine and chromite. Nature. 447, 303-306.
  74. Spandler C. O’Neill H.St.C. (2010) Diffusion and partition coefficients of minor and trace elements in San Carlos olivine at 1300°C with some geochemical implications. Contrib. Mineral. Petrol. 159, 791-818.
  75. Su B., Chen Y., Mao Q., Zhang D., Jia L.H., Guo S. (2019) Minor elements in olivine inspect the petrogenesis of orogenic peridotites. Lithos. 344–345, 207-216.
  76. Tobelko D.P., Portnyagin M.V., Krasheninnikov S.P., Grib E.N., Plechov P.Y. (2019) Compositions and formation conditions of primitive magmas of the Karymsky volcanic center, Kamchatka: evidence from melt inclusions and trace-element thermobarometry. Petrology. 27, 243-264.
  77. Toplis M.J. (2005) The thermodynamics of iron and magnesium partitioning between olivine and liquid: criteria for assessing and predicting equilibrium in natural and experimental systems. Contrib. Mineral. Petrol. 149, 22-39.
  78. Van Achterbergh E., Ryan C.G., Jackson S.E., Griffin, W.L. (2001) Data reduction software for LA-ICP-MS: appendix; In Sylvester, P.J. (ed.), Laser Ablation – ICP-Mass Spectrometry in the Earth Sciences: Principles and Applications, Mineralogical Association of Canada Short Course Series. 29, 239-243.
  79. Wan Z., Coogan L.A., Canil D. (2008) Experimental calibration of aluminum partitioning between olivine and spinel as a geothermometer. Am. Mineral. 93, 1142-1147.
  80. Wang J., Su B.-X., Robinson P.T., Xiao Y., Bai Y., Liu X., Sakyi P.A., Jing J.-J., Chen C., Liang Z., Bao Z.-A. (2021) Trace elements in olivine: Proxies for petrogenesis, mineralization and discrimination of mafic-ultramafic rocks. Lithos. 388–389, 106085.
  81. Zelenski M., Kamenetsky V.S., Mavrogenes J.A., Gurenko A.A., Danyushevsky L.V. (2018) Silicate-sulfide liquid immiscibility in modern arc basalt (Tolbachik volcano, Kamchatka): Part I. Occurrence and compositions of sulfide melts. Chem. Geol. 478, 102-111.

© Т.А. Шишкина, М.О. Аносова, Н.А. Мигдисова, М.В. Портнягин, Н.М. Сущевская, В.Г. Батанова, 2023

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>