Механизмы участия эпигенетических факторов в развитии рака мочевого пузыря
- Авторы: Мустафин Р.Н.1, Гилязова И.Р.1, Мустафин С.А.1, Хуснутдинова Э.К.2
-
Учреждения:
- Башкирский государственный медицинский университет
- Институт биохимии и генетики – обособленное структурное подразделение Уфимского федерального исследовательского центра Российской академии наук
- Выпуск: Том 61, № 10 (2025)
- Страницы: 14-28
- Раздел: ОБЗОРНЫЕ И ТЕОРЕТИЧЕСКИЕ СТАТЬИ
- URL: https://journals.rcsi.science/0016-6758/article/view/355168
- DOI: https://doi.org/10.7868/S3034510325100024
- ID: 355168
Цитировать
Аннотация
Ключевые слова
Об авторах
Р. Н. Мустафин
Башкирский государственный медицинский университет
Email: ruji79@mail.ru
Уфа, 450008 Россия
И. Р. Гилязова
Башкирский государственный медицинский университетУфа, 450008 Россия
С. А. Мустафин
Башкирский государственный медицинский университетУфа, 450008 Россия
Э. К. Хуснутдинова
Институт биохимии и генетики – обособленное структурное подразделение Уфимского федерального исследовательского центра Российской академии наукУфа, 450054 Россия
Список литературы
- Zhang Y., Rumgay H., Li M. et al. The global landscape of bladder cancer incidence and mortality in 2020 and projections to 2040 // J. Glob. Health. 2023. V. 13. https://doi.org/10.7189/jogh.13.04109
- Павлов В.Н., Измайлов А.А., Викторова Т.В. и др. // Эксперим. и клин. урология. 2010. T. 2. C. 30–33.
- Алексеев Б.Я., Андреева Ю.Ю., Новикова И.В. Факторы прогноза выживаемости у больных немышечно-инвазивным раком мочевого пузыря // Онкоурология. 2013. Т. 1. С. 34–42.
- Tran L., Xiao J.F., Agarwal N. et al. Advances in bladder cancer biology and therapy // Nat. Rev. Cancer. 2021. V. 21. P. 104–121. https://doi.org/10.1038/s41568-020-00313-1
- Гладков О.А., Булычкин П.В., Волкова М.И. и др. Практические рекомендации по лекарственному лечению рака мочевого пузыря. Практические рекомендации RUSSCO, часть 1 // Злокачественные опухоли. 2023. Т. 13. С. 620–639.
- Long C., Shi H., Li J. et al. The diagnostic accuracy of urine-derived exosomes for bladder cancer: А systematic review and meta-analysis // World J. Surg. Oncol. 2024. V. 22. P. 285. https://doi.org/10.1186/s12957-024-03569-1
- Dianatinasab M., Forozani E., Akbari A. et al. Dietary patterns and risk of bladder cancer: A systematic review and meta-analysis // BMC Publ. Health. 2022. V. 22. P. 73. https://doi.org/10.1186/s12889-022-12516-2
- Zhao X., Wang Y., Liang C. Cigarette smoking and risk of bladder cancer: a dose-response meta-analysis // Int. Urol. Nephrol. 2022. V. 54. P. 1169–1185. https://doi.org/10.1007/s11255-022-03173-w
- Wang X., Lin Y.W., Wang S. et al. A meta-analysis of tea consumption and the risk of bladder cancer // Urol. Int. 2013. V. 90. P. 10–16. https://doi.org/10.1159/000342804
- Sun J.X., Xu J.Z., Liu C.Q. et al. The association between human papillomavirus and bladder cancer: Evidence from meta-analysis and two-sample mendelian randomization // J. Med. Virol. 2023. V. 95. https://doi.org/10.1002/jmv.28208
- Motlaghzadeh S., Tabatabaei F., Eshragh F. et al. Association of viral infection with bladder cancer: A systematic review and meta-analysis // Pathol. Res. Pract. 2024. V. 264. https://doi.org/10.1016/j.prp.2024.155633.
- Isali I., McClellan P., Calaway A. et al. Gene network profiling in muscle-invasive bladder cancer: A systematic review and meta-analysis // Urol. Oncol. 2022. V. 40. P. 197. https://doi.org/10.1016/j.urolonc.2021.11.003
- Galesloot T.E., Grotenhuis A.J., Kolev D. et al. Genome-wide meta-analysis identifies novel genes associated with recurrence and progression in non-muscle-invasive bladder cancer // Eur. Urol. Oncol. 2022. V. 5(1). V. 70–83. https://doi.org/10.1016/j.euo.2021.07.001
- Koutros S., Kiemeney L.A., Pal Choudhury P. et al. Genome-wide association study of bladder cancer reveals new biological and translational insights // Eur. Urol. 2023. V. 84. P. 127–137. https://doi.org/10.1016/j.eururo.2023.04.020
- Yong S.Y., Raben T.G., Lello L., Hsu S.D.H. Genetic architecture of complex traits and disease risk predictors // Sci. Rep. 2020. V. 10. P. 12055. https://doi.org/10.1038/s41598-020-68881-8
- Nurk S., Koren S., Rhie A. et al. The complete sequence of a human genome // Science. 2022. V. 376. Р. 44–53. https://doi.org/10.1126/science.abj6987
- Park E.G., Ha H., Lee D.H. et al. Genomic analyses of non-coding RNAs overlapping transposable elements and its implication to human diseases // Int. J. Mol. Sci. 2022. V. 23. https://doi.org/10.3390/ijms23168950
- Zhang L., Zhang M., Wang H. et al. Comprehensive review of genetic association studies and meta-analysis on polymorphisms in microRNAs and urological neoplasms Risk // Sci. Rep. 2018. V. 8. P. 3776. https://doi.org/10.1038/s41598-018-21749-4
- Annapragada A.V., Niknafs N., White J.R. et al. Genome-wide repeat landscapes in cancer and cell-free DNA // Sci. Transl. Med. 2024. V. 16. https://doi.org/10.1126/scitranslmed.adj9283
- Whongsiri P., Goering W., Lautwein T. et al. Many different LINE-1 retroelements are activated in bladder cancer // Int. J. Mol. Sci. 2020. V. 21(24). https://doi.org/10.3390/ijms21249433
- Gosenca D., Gabriel U., Steidler A. et al. HERV-E-mediated modulation of PLA2G4A transcription in urothelial carcinoma // PLoS One. 2012. V. 7. https://doi.org/10.1371/journal.pone.0049341
- De Souza F.S., Franchini L.F., Rubinstein M. Exaptation of transposable elements into novel cis-regulatory elements: Is the evidence always strong // Mol. Biol. Evol. 2013. V. 30. P. 1239–1251.
- Li X., Bie L., Wang Y. et al. LINE-1 transcription activates long-range gene expression // Nat. Genet. 2024. V. 56. P. 1494–1502. https://doi.org/10.1038/s41588-024-01789-5
- Мустафин Р.Н., Хуснутдинова Э.К. Некодирующие части генома как основа эпигенетической наследственности // Вавил. журн. генетики и селекции. 2017. Т. 21. № 6. С. 742–749. https://doi.org/10.18699/10.18699/VJ17.30-o
- Мустафин Р.Н. Влияние ретроэлементов на онкогены и онкосупрессоры в канцерогенезе // Соврем. онкология. 2021. Т. 23. № 4. С. 666–673.
- Chen X., Zhang J., Ruan W. et al. Urine DNA methylation assay enables early detection and recurrence monitoring for bladder cancer // J. Clin. Invest. 2020. V. 130. P. 6278–6289. https://doi.org/10.1172/JCI139597
- Chalertpet K., Pin-On P., Aporntewan C. et al. Argonaute 4 as an effector protein in RNA-Directed DNA methylation in human cells // Front. Genet. 2019. V. 10. https://doi.org/10.3389/fgene.2019.00645
- Watcharanurak P., Mutirangura A. Human RNA-directed DNA methylation methylates high-mobility group box 1 protein-produced DNA gaps // Epigenomics. 2022. V. 14. P. 741–756. https://doi.org/10.2217/epi-2022-0022
- Mehmandar-Oskuie A., Jahankhani K., Rostamlou A. et al. Molecular landscape of LncRNAs in bladder cancer: From drug resistance to novel LncRNA-based therapeutic strategies // Biomed. Pharmacother. 2023. V. 165. https://doi.org/10.1016/j.biopha.2023.115242
- Honson D.D., Macfarlan T.S. A lncRNA-like role for LINE1s in development // Dev. Cell. 2018. V. 46 (20). P. 132–134.
- Lu X., Sachs F., Ramsay L. et al. The retrovirus HERVH is a long noncoding RNA required for human embryonic stem cell identity // Nat. Struct. Mol. Biol. 2014. V. 21. P. 423–425.
- Wang Y., Sun Q., Ji L. et al. lncRNA MORT regulates bladder cancer behaviors by downregulating microRNA-146a-5p // Nephron. 2020. V. 144. P. 351–357. https://doi.org/10.1159/000506291
- Ding Z., Ying W., He Y. et al. lncRNA-UCA1 in the diagnosis of bladder cancer: A meta-analysis // Medi- cine (Baltimore). 2021. V. 100. e24805. https://doi.org/10.1097/MD.0000000000024805.
- He S., Xu J., Chen M. et al. A meta-analysis of UCA1 accuracy in the detection of bladder cancer // Expert. Rev. Anticancer Ther. 2024. V. 24. P. 447–455. https://doi.org/10.1080/14737140.2024.2342528
- Su Y., Chen H., Yao L. et al. The relationship between the expression of lncRNA MALAT1 and clinical features and prognosis in bladder cancer: A meta-analysis // Cell Mol. Biol. 2023. V. 69. P. 166–171. https://doi.org/10.14715/cmb/2023.69.14.27
- Chen C., Zheng H., Luo Y. et al. SUMOylation promotes extracellular vesicle-mediated transmission of lncRNA ELNAT1 and lymph node metastasis in bladder cancer // J. Clin. Invest. 2021. V. 131. https://doi.org/10.1172/JCI146431
- Li Z., Fu H., Liu J. et al. LncRNA PVT1 promotes bladder cancer progression by forming a positive feedback loop with STAT5B // Pathol. Res. Pract. 2023. V. 248. https://doi.org/10.1016/j.prp.2023.154635.
- Mustafin R.N. The relationship of transposable elements with non-coding RNAs in emergence of human proteins and peptides // Current Proteomics. 2024. V. 21. P. 140–161. https://doi.org/10.2174/0115701646319572240805103747
- Luo H., Xu C., Le W. et al. lncRNA CASC11 promotes cancer cell proliferation in bladder cancer through miRNA-150 // J. Cell Biochem. 2019. V. 120. P. 13487–13493. https://doi.org/10.1002/jcb.28622
- Rui X., Wang L., Pan H. et al. LncRNA GAS6-AS2 promotes bladder cancer proliferation and metastasis via GAS6-AS2/miR-298/CDK9 axis // J. Cell. Mol. Med. 2019. V. 23. P. 865–876. https://doi.org/10.1111/jcmm.13986
- Xu G., Yang H., Liu M. et al. lncRNA TINCR facilities bladder cancer progression via regulating miR-7 and mTOR // Mol. Med. Rep. 2020. V. 22. P. 4243–4253. https://doi.org/10.3892/mmr.2020.11530.
- Luo W., Wang J., Xu W. et al. LncRNA RP11-89 facilitates tumorigenesis and ferroptosis resistance through PROM2-activated iron export by sponging miR-129-5p in bladder cancer // Cell Death Dis. 2021. V. 12. P. 1043. https://doi.org/10.1038/s41419-021-04296-1
- Li Y., Shi B., Dong F. et al. LncRNA KCNQ1OT1 facilitates the progression of bladder cancer by targeting MiR-218-5p/HS3ST3B1 // Cancer Gene Ther. 2021. V. 28(3–4). P. 212–220. https://doi.org/10.1038/s41417-020-00211-6
- Zhang W., Zhang J., Hu Z. et al. LncRNA ARAP1-AS1 promotes bladder cancer development by regulating the miR-3918/KIF20A axis // Mol. Biotechnol. 2022. V. 64(11). P. 1259–1269. https://doi.org/10.1007/s12033-022-00489-x
- Han Z., Tian Y., Liu Q. et al. LncRNA PTAR activates the progression of bladder cancer by modulating miR-299-3p/CD164 axis // Pathol. Res. Pract. 2022. V. 237. https://doi.org/10.1016/j.prp.2022.153994
- Zheng R., Gao F., Mao Z. et al. LncRNA BCCE4 cenetically enhances the PD-L1/PD-1 interaction in smoking-related bladder cancer by modulating miR-328-3p-USP18 signaling // Adv. Sci. (Weinh). 2023. V. 10. https://doi.org/10.1002/advs.202303473
- Chakrabortty A., Patton D.J., Smith B.F., Agarwal P. miRNAs: Potential as biomarkers and therapeutic targets for cancer // Genes (Basel). 2023. V. 14. https://doi.org/10.3390/genes14071375
- Li J., Li H., Yang Y. et al. miRNA-143 as a potential biomarker in the detection of bladder cancer: a meta-analysis // Future Oncol. 2024. V. 20. P. 1275–1287. https://doi.org/10.2217/fon-2023-0922.
- Jiang L., Sun G., Zou L. et al. Noncoding RNAs as a potential biomarker for the prognosis of bladder cancer: A systematic review and meta-analysis // Expert Rev. Mol. Diagn. 2023. V. 23(4). P. 325–334. https://doi.org/10.1080/14737159.2023.2195554
- Mei Y., Zheng J., Xiang P. et al. Prognostic value of the miR-200 family in bladder cancer: A systematic review and meta-analysis // Medicine (Baltimore). 2020. V. 99. e22891. https://doi.org/10.1097/MD.0000000000022891.
- Yang F.R., Li H.J., Li T.T. et al. Prognostic value of MicroRNA-15a in human cancers: A meta-analysis and bioinformatics // Biomed. Res. Int. 2019. V. 2019. https://doi.org/10.1155/2019/2063823
- Kaba M., Pirinççi N., Demir M. et al. The relationship between microRNAs and bladder cancer: Are microRNAs useful to predict bladder cancer in suspicious patients // Int. Urol. Nephrol. 2023. V. 55. P. 2483–2491. https://doi.org/10.1007/s11255-023-03666-2
- Armstrong D.A., Green B.B., Seigne J.D. et al. MicroRNA molecular profiling from matched tumor and bio-fluids in bladder cancer // Mol. Cancer. 2015. V. 14. P. 194. https://doi.org/10.1186/s12943-015-0466-2
- Ren W., Hu J., Li H. et al. MiR-616-5p promotes invasion and migration of bladder cancer via downregula- ting NR2C2 expression // Front. Oncol. 2021. V. 11. https://doi.org/10.3389/fonc.2021.762946
- Dong W., Bi J., Liu H. et al. Circular RNA ACVR2A suppresses bladder cancer cells proliferation and metastasis through miR-626/EYA4 axis // Mol. Cancer. 2019. V. 18. P. 95. https://doi.org/10.1186/s12943-019-1025-z
- Song T., Zhang X., Zhang L. et al. MiR-708 promotes the development of bladder carcinoma via direct repression of Caspase-2 // J. Cancer Res. Clin. Oncol. 2013. V. 139. P. 1189–1198. https://doi.org/10.1007/s00432-013-1392-6
- Liu C.P., Zhang J.H., Zheng S.C. et al. A novel clinical multidimensional transcriptome signature predicts prognosis in bladder cancer // Oncol. Rep. 2018. V. 40. P. 2826–2835. https://doi.org/10.3892/or.2018.6677
- Tölle A., Jung M., Rabenhorst S. et al. Identification of microRNAs in blood and urine as tumour markers for the detection of urinary bladder cancer // Oncol. Rep. 2013. V. 30. P. 1949–1956. https://doi.org/10.3892/or.2013.2621
- Zhu J., Luo Y., Zhao Y. et al. CircEHBP1 promotes lymphangiogenesis and lymphatic metastasis of bladder cancer via miR-130a-3p/TGFβR1/VEGF-D signaling // Mol. Ther. 2021. V. 29. P. 1838–1852. https://doi.org/10.1016/j.ymthe.2021.01.031
- Chen Y., Zhang W., Shen L. et al. Downregulation of long noncoding RNA LUCAT1 suppresses the migration and invasion of bladder cancer by targeting miR-181c-5p // Biomed. Res. Int. 2020. V. 2020. https://doi.org/10.1155/2020/4817608
- Lin T., Zhou S., Gao H. et al. MicroRNA-325 is a potential biomarker and tumor regulator in human bladder cancer // Technol. Cancer Res. Treat. 2018. V. 17. https://doi.org/10.1177/1533033818790536
- Chen X., Jia C., Jia C. et al. MicroRNA-374a inhibits aggressive tumor biological behavior in bladder carcinoma by suppressing Wnt/β-Catenin signaling // Cell Physiol. Biochem. 2018. V. 48. P. 815–826. https://doi.org/10.1159/000491911
- Zhu J., Huang Y., Zhang Y. et al. KCNMB2-AS1 promotes bladder cancer progression through sponging miR-374a-3p to upregulate S100A10 // Front. Genet. 2021. V. 12. https://doi.org/10.3389/fgene.2021.655569
- Ueno K., Hirata H., Majid S. et al. Tumor suppressor microRNA-493 decreases cell motility and migration ability in human bladder cancer cells by downregula- ting RhoC and FZD4 // Mol. Cancer Ther. 2012. V. 11. P. 244–253. https://doi.org/10.1158/1535-7163.MCT-11-0592
- Guo C., Li X., Xie J. et al. Long noncoding RNA SNHG1 activates autophagy and promotes cell invasion in bladder cancer // Front. Oncol. 2021. V. 13(11). https://doi.org/10.3389/fonc.2021.660551
- Liang Z., Li S., Xu X. et al. MicroRNA-576-3p inhibits proliferation in bladder cancer cells by targeting cyc- lin D1 // Mol. Cells. 2015. V. 38. P. 130–137. https://doi.org/10.14348/molcells.2015.2146
- Meng F.M., Meng F.M., Song X.L. MiR-576-3p is a novel marker correlated with poor clinical outcome in bladder cancer // Eur. Rev. Med. Pharmacol. Sci. 2017. V. 21. P. 973–977.
- Wang C., Yang X. CircRAPGEF5 sponges miR-582-3p and targets KIF3A to regulate bladder cancer cell proliferation, migration and invasion // Int. Immunopharmacol. 2024. V. 131. https://doi.org/10.1016/j.intimp.2024.111613
- Lu P., Jiang Y., Xia Z. Long noncoding RNA TUG1 decreases bladder cancer chemo-sensitivity toward doxorubicin through elevating KPNA2 expression and activating the PI3K/AKT pathway via adsorbing miR-582-5p // Anticancer Drugs. 2023. V. 34. P. 144–154. https://doi.org/10.1097/CAD.0000000000001393
- Wu J., Li W., Ning J. et al. Long noncoding RNA UCA1 targets miR-582-5p and contributes to the progression and drug resistance of bladder cancer cells through ATG7-mediated autophagy inhibition // Onco Targets Ther. 2024. V. 17. P. 603–604. https://doi.org/10.2147/OTT.S488460
- Yin Y.W., Liu K.L., Lu B.S. et al. RBM24 exacerbates bladder cancer progression by forming a Runx1t1/TCF4/miR-625-5p feedback loop // Exp. Mol. Med. 2021. V. 53. P. 933–946. https://doi.org/10.1038/s12276-021-00623-w
- Xiao Y., Wang T., Cheng X. et al. LINC00958 inhibits autophagy of bladder cancer cells via sponge adsorption of miR-625-5p to promote tumor angiogenesis and oxidative stress // Oxid. Med. Cell Longev. 2022. V. 2022. https://doi.org/10.1155/2022/2435114
- Wang K.J., Ye S.Z., Jia X.L. et al. RON receptor tyrosine kinase as a critical determinant in promoting tumorigenic behaviors of bladder cancer cells through regulating MMP12 and HIF-2α pathways // Cell Death Dis. 2024. V. 15. P. 844. https://doi.org/10.1038/s41419-024-07245-w
- Xu R., Li H., Wu S. et al. MicroRNA-1246 regulates the radio-sensitizing effect of curcumin in bladder cancer cells via activating P53 // Int. Urol. Nephrol. 2019. V. 51. P. 1771–1779. https://doi.org/10.1007/s11255-019-02210-5
- Liu Q., Zhou Q., Zhong P. Circ_0067934 increases bladder cancer cell proliferation, migration and invasion through suppressing miR-1304 expression and increasing Myc expression levels // Exp. Ther. Med. 2020. V. 19. P. 3751–3759. https://doi.org/10.3892/etm.2020.8648
- Chen D., Chen J., Gao J. et al. LncRNA DDX11-AS1 promotes bladder cancer occurrence via protec- ting LAMB3 from downregulation by sponging miR-2355-5p // Cancer Biother. Radiopharm. 2020. V. 35. P. 319–328. https://doi.org/10.1089/cbr.2019.3021
- Muzaail H.H., El-Assmy A., Harraz A.M. et al. Prediction of recurrence of non-muscle invasive bladder cancer: The role of androgen receptor and miRNA-2909 // Urol. Oncol. 2022. V. 40. P. 197. https://doi.org/10.1016/j.urolonc.2022.03.004
- Li X., Liang Z., Pan J. et al. Identification of BACH1-IT2-miR-4786-Siglec-15 immune suppressive axis in bladder cancer // BMC Cancer. 2024. V. 24. P. 328. https://doi.org/10.1186/s12885-024-12061-8
- Stempor P.A., Avni D., Leibowitz R. et al. Comprehensive analysis of correlations in the expression of miRNA genes and immune checkpoint genes in bladder cancer cells // Int. J. Mol. Sci. 2021. V. 22. https://doi.org/10.3390/ijms22052553
- De Koning A.P., Gu W., Castoe T.A. et al. Repetitive elements may comprise over two–thirds of the human genome // PLoS Genetics. 2011. V. 7. P. e1002384.
- Zhang J., Sun W., Ren C. et al. A PolH transcript with a short 3'UTR enhances PolH expression and mediates cisplatin resistance // Cancer Res. 2019. V. 79. P. 3714–3724. https://doi.org/10.1158/0008-5472.CAN-18-3928
- Luo L., Miao P., Ming Y. et al. Circ-ZFR promotes progression of bladder cancer by upregulating WNT5A Via sponging miR-545 and miR-1270 // Front. Oncol. 2021. V. 10. https://doi.org/10.3389/fonc.2020.596623
- Sun S., Liu F., Xian S., Cai D. MiR-325-3p overexpression inhibits proliferation and metastasis of bladder cancer cells by regulating MT3 // Med. Sci. Monit. 2020. V. 26. https://doi.org/10.12659/MSM.920331
- Tian Y., Guan Y., Su Y. et al. MiR-582-5p inhibits bladder cancer-genesis by suppressing TTK expression // Cancer Manag. Res. 2020. V. 20. P. 11933–11944. https://doi.org/10.2147/CMAR.S274835
- Park E.G., Lee D.H., Kim W.R. et al. Human endogenous retrovirus-H-derived miR-4454 inhibits the expression of DNAJB4 and SASH1 in non-muscle-invasive bladder cancer // Genes (Basel). 2023. V. 14. https://doi.org/10.3390/genes14071410
- Neuhausen A., Florl A.R., Grimm M.O., Schulz W.A. DNA methylation alterations in urothelial carcinoma // Cancer Biol. Ther. 2006. V. 5. P. 993–1001. https://doi.org/10.4161/cbt.5.8.2885
- Wilhelm C.S., Kelsey K.T., Butler R. et al. Implications of LINE1 methylation for bladder cancer risk in wo-men // Clin. Cancer Res. 2010. V. 16. P. 1682–1689. https://doi.org/10.1158/1078-0432.CCR-09-2983
- Cash H.L., Tao L., Yuan J.M. et al. LINE-1 hypomethylation is associated with bladder cancer risk among nonsmoking Chinese // Int. J. Cancer. 2012. V. 130. P. 1151–1159. https://doi.org/10.1002/ijc.26098
- Andreotti G., Karami S., Pfeiffer R.M. et al. LINE1 methylation levels associated with increased bladder cancer risk in pre-diagnostic blood DNA among US (PLCO) and European (ATBC) cohort study parti- cipants // Epigenetics. 2014. V. 9. P. 404–415. https://doi.org/10.4161/epi.27386
- Salas L.A., Villanueva C.M., Tajuddin S.M. et al. LINE-1 methylation in granulocyte DNA and trihalomethane exposure is associated with bladder cancer risk // Epigenetics. 2014. V. 9. P. 1532–1539. https://doi.org/10.4161/15592294.2014.983377
- Kreimer U., Schulz W.A., Koch A. et al. HERV-K and LINE-1 DNA methylation and reexpression in urothelial carcinoma // Front. Oncol. 2013. V. 3. https://doi.org/10.3389/fonc.2013.00255
- Patchsung M., Boonla C., Amnattrakul P. et al. Long interspersed nuclear element-1 hypomethylation and oxidative stress: correlation and bladder cancer diagnostic potential // PLoS One. 2012. V. 7. https://doi.org/10.1371/journal.pone.0037009
- Wongpaiboonwattana W., Tosukhowong P., Dissayabut- ra T. et al. Oxidative stress induces hypomethylation of LINE-1 and hypermethylation of the RUNX3 promoter in a bladder cancer cell line // Asian Pac. J. Cancer Prev. 2013. V. 14. P. 3773–3778. https://doi.org/10.7314/apjcp.2013.14.6.3773
- Jaguva Vasudevan A.A., Kreimer U., Schulz W.A. et al. APOBEC3B activity is prevalent in urothelial carcinoma cells and only slightly affected by LINE-1 expression // Front. Microbiol. 2018. V. 9. https://doi.org/10.3389/fmicb.2018.02088
- Wang Z., Ying Y., Wang M. et al. Comprehensive identification of onco-exaptation events in bladder cancer cell lines revealed L1PA2-SYT1 as a prognosis-relevant event // Science. 2023. V. 26. https://doi.org/10.1016/j.isci.2023.108482
- Atala A. Re: Mutations in 3'-long terminal repeat of HERV-W family in chromosome 7 upregulate syncytin-1 expression in urothelial cell carcinoma of the bladder through interacting with c-Myb // J. Urol. 2015. V. 193. P. 1061. https://doi.org/10.1016/j.juro.2014.12.031
- Stricker E., Peckham-Gregory E.C., Scheurer M.E. CancerHERVdb: Human endogenous retrovirus (HERV) expression database for human cancer accelerates studies of the retrovirome and predictions for HERV-based therapies // J. Virol. 2023. V. 97. https://doi.org/10.1128/jvi.00059-23 https://doi.org/
Дополнительные файлы


