Mechanisms of epigenetic factors involvement in the development of bladder cancer

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Bladder cancer is associated with various polymorphisms in the human genome, many of which are localized in intergenic, regulatory and intronic regions where genes for non-coding RNA and mobile elements are located. Therefore, the discovered associations exert their influence on bladder cancer development by changing the activity of non-coding RNAs and mobile elements. This is reflected in DNA methylation abnormalities, since miRNAs serve as guides for RNA-dependent DNA methylation and retroelements are competing endogenous RNAs for miRNAs. Scientific literature analysis has shown the involvement of a large number of long non-coding RNAs and microRNAs in bladder cancer development. These molecules can function as oncogenes and as tumor suppressors depending on their target genes. A combined effect of long non-coding RNAs with microRNAs (TINCR/miR7, RP11-89/miR-129-5p, CASC11/miR-150, LUCAT1/miR-181c-5p, KCNQ1OT1/miR-218-5p, GAS6-AS6/miR-298, BCCE4/miR-328-3p, KCNMB2-AS1/miR-374a, SNHG1/miR-493, TUG1/miR-582-5p, UCA1/miR-582-5p, LINC00958/miR-625, DDX11-AS1/miR-2355-5p, ARAP1-AS1/miR-3918, BACH1-IT2/miR-4786) was revealed, as well as the role of 28 retroelement-derived microRNAs in bladder cancer carcinogenesis. The activation of retroelements, which serve as drivers of epigenetic regulation, has been described and confirmed in a number of clinical studies.

Авторлар туралы

R. Mustafin

Bashkir State Medical University

Email: ruji79@mail.ru
Ufa, 450008 Russia

I. Gilyazova

Bashkir State Medical University

Ufa, 450008 Russia

S. Mustafin

Bashkir State Medical University

Ufa, 450008 Russia

E. Khusnutdinova

Institute of Biochemistry and Genetics, Ufa Federal Research Centre, Russian Academy of Sciences

Ufa, 450054 Russia

Әдебиет тізімі

  1. Zhang Y., Rumgay H., Li M. et al. The global landscape of bladder cancer incidence and mortality in 2020 and projections to 2040 // J. Glob. Health. 2023. V. 13. https://doi.org/10.7189/jogh.13.04109
  2. Павлов В.Н., Измайлов А.А., Викторова Т.В. и др. // Эксперим. и клин. урология. 2010. T. 2. C. 30–33.
  3. Алексеев Б.Я., Андреева Ю.Ю., Новикова И.В. Факторы прогноза выживаемости у больных немышечно-инвазивным раком мочевого пузыря // Онкоурология. 2013. Т. 1. С. 34–42.
  4. Tran L., Xiao J.F., Agarwal N. et al. Advances in bladder cancer biology and therapy // Nat. Rev. Cancer. 2021. V. 21. P. 104–121. https://doi.org/10.1038/s41568-020-00313-1
  5. Гладков О.А., Булычкин П.В., Волкова М.И. и др. Практические рекомендации по лекарственному лечению рака мочевого пузыря. Практические рекомендации RUSSCO, часть 1 // Злокачественные опухоли. 2023. Т. 13. С. 620–639.
  6. Long C., Shi H., Li J. et al. The diagnostic accuracy of urine-derived exosomes for bladder cancer: А systematic review and meta-analysis // World J. Surg. Oncol. 2024. V. 22. P. 285. https://doi.org/10.1186/s12957-024-03569-1
  7. Dianatinasab M., Forozani E., Akbari A. et al. Dietary patterns and risk of bladder cancer: A systematic review and meta-analysis // BMC Publ. Health. 2022. V. 22. P. 73. https://doi.org/10.1186/s12889-022-12516-2
  8. Zhao X., Wang Y., Liang C. Cigarette smoking and risk of bladder cancer: a dose-response meta-analysis // Int. Urol. Nephrol. 2022. V. 54. P. 1169–1185. https://doi.org/10.1007/s11255-022-03173-w
  9. Wang X., Lin Y.W., Wang S. et al. A meta-analysis of tea consumption and the risk of bladder cancer // Urol. Int. 2013. V. 90. P. 10–16. https://doi.org/10.1159/000342804
  10. Sun J.X., Xu J.Z., Liu C.Q. et al. The association between human papillomavirus and bladder cancer: Evidence from meta-analysis and two-sample mendelian randomization // J. Med. Virol. 2023. V. 95. https://doi.org/10.1002/jmv.28208
  11. Motlaghzadeh S., Tabatabaei F., Eshragh F. et al. Association of viral infection with bladder cancer: A systematic review and meta-analysis // Pathol. Res. Pract. 2024. V. 264. https://doi.org/10.1016/j.prp.2024.155633.
  12. Isali I., McClellan P., Calaway A. et al. Gene network profiling in muscle-invasive bladder cancer: A systematic review and meta-analysis // Urol. Oncol. 2022. V. 40. P. 197. https://doi.org/10.1016/j.urolonc.2021.11.003
  13. Galesloot T.E., Grotenhuis A.J., Kolev D. et al. Genome-wide meta-analysis identifies novel genes associated with recurrence and progression in non-muscle-invasive bladder cancer // Eur. Urol. Oncol. 2022. V. 5(1). V. 70–83. https://doi.org/10.1016/j.euo.2021.07.001
  14. Koutros S., Kiemeney L.A., Pal Choudhury P. et al. Genome-wide association study of bladder cancer reveals new biological and translational insights // Eur. Urol. 2023. V. 84. P. 127–137. https://doi.org/10.1016/j.eururo.2023.04.020
  15. Yong S.Y., Raben T.G., Lello L., Hsu S.D.H. Genetic architecture of complex traits and disease risk predictors // Sci. Rep. 2020. V. 10. P. 12055. https://doi.org/10.1038/s41598-020-68881-8
  16. Nurk S., Koren S., Rhie A. et al. The complete sequence of a human genome // Science. 2022. V. 376. Р. 44–53. https://doi.org/10.1126/science.abj6987
  17. Park E.G., Ha H., Lee D.H. et al. Genomic analyses of non-coding RNAs overlapping transposable elements and its implication to human diseases // Int. J. Mol. Sci. 2022. V. 23. https://doi.org/10.3390/ijms23168950
  18. Zhang L., Zhang M., Wang H. et al. Comprehensive review of genetic association studies and meta-analysis on polymorphisms in microRNAs and urological neoplasms Risk // Sci. Rep. 2018. V. 8. P. 3776. https://doi.org/10.1038/s41598-018-21749-4
  19. Annapragada A.V., Niknafs N., White J.R. et al. Genome-wide repeat landscapes in cancer and cell-free DNA // Sci. Transl. Med. 2024. V. 16. https://doi.org/10.1126/scitranslmed.adj9283
  20. Whongsiri P., Goering W., Lautwein T. et al. Many different LINE-1 retroelements are activated in bladder cancer // Int. J. Mol. Sci. 2020. V. 21(24). https://doi.org/10.3390/ijms21249433
  21. Gosenca D., Gabriel U., Steidler A. et al. HERV-E-mediated modulation of PLA2G4A transcription in urothelial carcinoma // PLoS One. 2012. V. 7. https://doi.org/10.1371/journal.pone.0049341
  22. De Souza F.S., Franchini L.F., Rubinstein M. Exaptation of transposable elements into novel cis-regulatory elements: Is the evidence always strong // Mol. Biol. Evol. 2013. V. 30. P. 1239–1251.
  23. Li X., Bie L., Wang Y. et al. LINE-1 transcription activates long-range gene expression // Nat. Genet. 2024. V. 56. P. 1494–1502. https://doi.org/10.1038/s41588-024-01789-5
  24. Мустафин Р.Н., Хуснутдинова Э.К. Некодирующие части генома как основа эпигенетической наследственности // Вавил. журн. генетики и селекции. 2017. Т. 21. № 6. С. 742–749. https://doi.org/10.18699/10.18699/VJ17.30-o
  25. Мустафин Р.Н. Влияние ретроэлементов на онкогены и онкосупрессоры в канцерогенезе // Соврем. онкология. 2021. Т. 23. № 4. С. 666–673.
  26. Chen X., Zhang J., Ruan W. et al. Urine DNA methylation assay enables early detection and recurrence monitoring for bladder cancer // J. Clin. Invest. 2020. V. 130. P. 6278–6289. https://doi.org/10.1172/JCI139597
  27. Chalertpet K., Pin-On P., Aporntewan C. et al. Argonaute 4 as an effector protein in RNA-Directed DNA methylation in human cells // Front. Genet. 2019. V. 10. https://doi.org/10.3389/fgene.2019.00645
  28. Watcharanurak P., Mutirangura A. Human RNA-directed DNA methylation methylates high-mobility group box 1 protein-produced DNA gaps // Epigenomics. 2022. V. 14. P. 741–756. https://doi.org/10.2217/epi-2022-0022
  29. Mehmandar-Oskuie A., Jahankhani K., Rostamlou A. et al. Molecular landscape of LncRNAs in bladder cancer: From drug resistance to novel LncRNA-based therapeutic strategies // Biomed. Pharmacother. 2023. V. 165. https://doi.org/10.1016/j.biopha.2023.115242
  30. Honson D.D., Macfarlan T.S. A lncRNA-like role for LINE1s in development // Dev. Cell. 2018. V. 46 (20). P. 132–134.
  31. Lu X., Sachs F., Ramsay L. et al. The retrovirus HERVH is a long noncoding RNA required for human embryonic stem cell identity // Nat. Struct. Mol. Biol. 2014. V. 21. P. 423–425.
  32. Wang Y., Sun Q., Ji L. et al. lncRNA MORT regulates bladder cancer behaviors by downregulating microRNA-146a-5p // Nephron. 2020. V. 144. P. 351–357. https://doi.org/10.1159/000506291
  33. Ding Z., Ying W., He Y. et al. lncRNA-UCA1 in the diagnosis of bladder cancer: A meta-analysis // Medi- cine (Baltimore). 2021. V. 100. e24805. https://doi.org/10.1097/MD.0000000000024805.
  34. He S., Xu J., Chen M. et al. A meta-analysis of UCA1 accuracy in the detection of bladder cancer // Expert. Rev. Anticancer Ther. 2024. V. 24. P. 447–455. https://doi.org/10.1080/14737140.2024.2342528
  35. Su Y., Chen H., Yao L. et al. The relationship between the expression of lncRNA MALAT1 and clinical features and prognosis in bladder cancer: A meta-analysis // Cell Mol. Biol. 2023. V. 69. P. 166–171. https://doi.org/10.14715/cmb/2023.69.14.27
  36. Chen C., Zheng H., Luo Y. et al. SUMOylation promotes extracellular vesicle-mediated transmission of lncRNA ELNAT1 and lymph node metastasis in bladder cancer // J. Clin. Invest. 2021. V. 131. https://doi.org/10.1172/JCI146431
  37. Li Z., Fu H., Liu J. et al. LncRNA PVT1 promotes bladder cancer progression by forming a positive feedback loop with STAT5B // Pathol. Res. Pract. 2023. V. 248. https://doi.org/10.1016/j.prp.2023.154635.
  38. Mustafin R.N. The relationship of transposable elements with non-coding RNAs in emergence of human proteins and peptides // Current Proteomics. 2024. V. 21. P. 140–161. https://doi.org/10.2174/0115701646319572240805103747
  39. Luo H., Xu C., Le W. et al. lncRNA CASC11 promotes cancer cell proliferation in bladder cancer through miRNA-150 // J. Cell Biochem. 2019. V. 120. P. 13487–13493. https://doi.org/10.1002/jcb.28622
  40. Rui X., Wang L., Pan H. et al. LncRNA GAS6-AS2 promotes bladder cancer proliferation and metastasis via GAS6-AS2/miR-298/CDK9 axis // J. Cell. Mol. Med. 2019. V. 23. P. 865–876. https://doi.org/10.1111/jcmm.13986
  41. Xu G., Yang H., Liu M. et al. lncRNA TINCR facilities bladder cancer progression via regulating miR-7 and mTOR // Mol. Med. Rep. 2020. V. 22. P. 4243–4253. https://doi.org/10.3892/mmr.2020.11530.
  42. Luo W., Wang J., Xu W. et al. LncRNA RP11-89 facilitates tumorigenesis and ferroptosis resistance through PROM2-activated iron export by sponging miR-129-5p in bladder cancer // Cell Death Dis. 2021. V. 12. P. 1043. https://doi.org/10.1038/s41419-021-04296-1
  43. Li Y., Shi B., Dong F. et al. LncRNA KCNQ1OT1 facilitates the progression of bladder cancer by targeting MiR-218-5p/HS3ST3B1 // Cancer Gene Ther. 2021. V. 28(3–4). P. 212–220. https://doi.org/10.1038/s41417-020-00211-6
  44. Zhang W., Zhang J., Hu Z. et al. LncRNA ARAP1-AS1 promotes bladder cancer development by regulating the miR-3918/KIF20A axis // Mol. Biotechnol. 2022. V. 64(11). P. 1259–1269. https://doi.org/10.1007/s12033-022-00489-x
  45. Han Z., Tian Y., Liu Q. et al. LncRNA PTAR activates the progression of bladder cancer by modulating miR-299-3p/CD164 axis // Pathol. Res. Pract. 2022. V. 237. https://doi.org/10.1016/j.prp.2022.153994
  46. Zheng R., Gao F., Mao Z. et al. LncRNA BCCE4 cenetically enhances the PD-L1/PD-1 interaction in smoking-related bladder cancer by modulating miR-328-3p-USP18 signaling // Adv. Sci. (Weinh). 2023. V. 10. https://doi.org/10.1002/advs.202303473
  47. Chakrabortty A., Patton D.J., Smith B.F., Agarwal P. miRNAs: Potential as biomarkers and therapeutic targets for cancer // Genes (Basel). 2023. V. 14. https://doi.org/10.3390/genes14071375
  48. Li J., Li H., Yang Y. et al. miRNA-143 as a potential biomarker in the detection of bladder cancer: a meta-analysis // Future Oncol. 2024. V. 20. P. 1275–1287. https://doi.org/10.2217/fon-2023-0922.
  49. Jiang L., Sun G., Zou L. et al. Noncoding RNAs as a potential biomarker for the prognosis of bladder cancer: A systematic review and meta-analysis // Expert Rev. Mol. Diagn. 2023. V. 23(4). P. 325–334. https://doi.org/10.1080/14737159.2023.2195554
  50. Mei Y., Zheng J., Xiang P. et al. Prognostic value of the miR-200 family in bladder cancer: A systematic review and meta-analysis // Medicine (Baltimore). 2020. V. 99. e22891. https://doi.org/10.1097/MD.0000000000022891.
  51. Yang F.R., Li H.J., Li T.T. et al. Prognostic value of MicroRNA-15a in human cancers: A meta-analysis and bioinformatics // Biomed. Res. Int. 2019. V. 2019. https://doi.org/10.1155/2019/2063823
  52. Kaba M., Pirinççi N., Demir M. et al. The relationship between microRNAs and bladder cancer: Are microRNAs useful to predict bladder cancer in suspicious patients // Int. Urol. Nephrol. 2023. V. 55. P. 2483–2491. https://doi.org/10.1007/s11255-023-03666-2
  53. Armstrong D.A., Green B.B., Seigne J.D. et al. MicroRNA molecular profiling from matched tumor and bio-fluids in bladder cancer // Mol. Cancer. 2015. V. 14. P. 194. https://doi.org/10.1186/s12943-015-0466-2
  54. Ren W., Hu J., Li H. et al. MiR-616-5p promotes invasion and migration of bladder cancer via downregula- ting NR2C2 expression // Front. Oncol. 2021. V. 11. https://doi.org/10.3389/fonc.2021.762946
  55. Dong W., Bi J., Liu H. et al. Circular RNA ACVR2A suppresses bladder cancer cells proliferation and metastasis through miR-626/EYA4 axis // Mol. Cancer. 2019. V. 18. P. 95. https://doi.org/10.1186/s12943-019-1025-z
  56. Song T., Zhang X., Zhang L. et al. MiR-708 promotes the development of bladder carcinoma via direct repression of Caspase-2 // J. Cancer Res. Clin. Oncol. 2013. V. 139. P. 1189–1198. https://doi.org/10.1007/s00432-013-1392-6
  57. Liu C.P., Zhang J.H., Zheng S.C. et al. A novel clinical multidimensional transcriptome signature predicts prognosis in bladder cancer // Oncol. Rep. 2018. V. 40. P. 2826–2835. https://doi.org/10.3892/or.2018.6677
  58. Tölle A., Jung M., Rabenhorst S. et al. Identification of microRNAs in blood and urine as tumour markers for the detection of urinary bladder cancer // Oncol. Rep. 2013. V. 30. P. 1949–1956. https://doi.org/10.3892/or.2013.2621
  59. Zhu J., Luo Y., Zhao Y. et al. CircEHBP1 promotes lymphangiogenesis and lymphatic metastasis of bladder cancer via miR-130a-3p/TGFβR1/VEGF-D signaling // Mol. Ther. 2021. V. 29. P. 1838–1852. https://doi.org/10.1016/j.ymthe.2021.01.031
  60. Chen Y., Zhang W., Shen L. et al. Downregulation of long noncoding RNA LUCAT1 suppresses the migration and invasion of bladder cancer by targeting miR-181c-5p // Biomed. Res. Int. 2020. V. 2020. https://doi.org/10.1155/2020/4817608
  61. Lin T., Zhou S., Gao H. et al. MicroRNA-325 is a potential biomarker and tumor regulator in human bladder cancer // Technol. Cancer Res. Treat. 2018. V. 17. https://doi.org/10.1177/1533033818790536
  62. Chen X., Jia C., Jia C. et al. MicroRNA-374a inhibits aggressive tumor biological behavior in bladder carcinoma by suppressing Wnt/β-Catenin signaling // Cell Physiol. Biochem. 2018. V. 48. P. 815–826. https://doi.org/10.1159/000491911
  63. Zhu J., Huang Y., Zhang Y. et al. KCNMB2-AS1 promotes bladder cancer progression through sponging miR-374a-3p to upregulate S100A10 // Front. Genet. 2021. V. 12. https://doi.org/10.3389/fgene.2021.655569
  64. Ueno K., Hirata H., Majid S. et al. Tumor suppressor microRNA-493 decreases cell motility and migration ability in human bladder cancer cells by downregula- ting RhoC and FZD4 // Mol. Cancer Ther. 2012. V. 11. P. 244–253. https://doi.org/10.1158/1535-7163.MCT-11-0592
  65. Guo C., Li X., Xie J. et al. Long noncoding RNA SNHG1 activates autophagy and promotes cell invasion in bladder cancer // Front. Oncol. 2021. V. 13(11). https://doi.org/10.3389/fonc.2021.660551
  66. Liang Z., Li S., Xu X. et al. MicroRNA-576-3p inhibits proliferation in bladder cancer cells by targeting cyc- lin D1 // Mol. Cells. 2015. V. 38. P. 130–137. https://doi.org/10.14348/molcells.2015.2146
  67. Meng F.M., Meng F.M., Song X.L. MiR-576-3p is a novel marker correlated with poor clinical outcome in bladder cancer // Eur. Rev. Med. Pharmacol. Sci. 2017. V. 21. P. 973–977.
  68. Wang C., Yang X. CircRAPGEF5 sponges miR-582-3p and targets KIF3A to regulate bladder cancer cell proliferation, migration and invasion // Int. Immunopharmacol. 2024. V. 131. https://doi.org/10.1016/j.intimp.2024.111613
  69. Lu P., Jiang Y., Xia Z. Long noncoding RNA TUG1 decreases bladder cancer chemo-sensitivity toward doxorubicin through elevating KPNA2 expression and activating the PI3K/AKT pathway via adsorbing miR-582-5p // Anticancer Drugs. 2023. V. 34. P. 144–154. https://doi.org/10.1097/CAD.0000000000001393
  70. Wu J., Li W., Ning J. et al. Long noncoding RNA UCA1 targets miR-582-5p and contributes to the progression and drug resistance of bladder cancer cells through ATG7-mediated autophagy inhibition // Onco Targets Ther. 2024. V. 17. P. 603–604. https://doi.org/10.2147/OTT.S488460
  71. Yin Y.W., Liu K.L., Lu B.S. et al. RBM24 exacerbates bladder cancer progression by forming a Runx1t1/TCF4/miR-625-5p feedback loop // Exp. Mol. Med. 2021. V. 53. P. 933–946. https://doi.org/10.1038/s12276-021-00623-w
  72. Xiao Y., Wang T., Cheng X. et al. LINC00958 inhibits autophagy of bladder cancer cells via sponge adsorption of miR-625-5p to promote tumor angiogenesis and oxidative stress // Oxid. Med. Cell Longev. 2022. V. 2022. https://doi.org/10.1155/2022/2435114
  73. Wang K.J., Ye S.Z., Jia X.L. et al. RON receptor tyrosine kinase as a critical determinant in promoting tumorigenic behaviors of bladder cancer cells through regulating MMP12 and HIF-2α pathways // Cell Death Dis. 2024. V. 15. P. 844. https://doi.org/10.1038/s41419-024-07245-w
  74. Xu R., Li H., Wu S. et al. MicroRNA-1246 regulates the radio-sensitizing effect of curcumin in bladder cancer cells via activating P53 // Int. Urol. Nephrol. 2019. V. 51. P. 1771–1779. https://doi.org/10.1007/s11255-019-02210-5
  75. Liu Q., Zhou Q., Zhong P. Circ_0067934 increases bladder cancer cell proliferation, migration and invasion through suppressing miR-1304 expression and increasing Myc expression levels // Exp. Ther. Med. 2020. V. 19. P. 3751–3759. https://doi.org/10.3892/etm.2020.8648
  76. Chen D., Chen J., Gao J. et al. LncRNA DDX11-AS1 promotes bladder cancer occurrence via protec- ting LAMB3 from downregulation by sponging miR-2355-5p // Cancer Biother. Radiopharm. 2020. V. 35. P. 319–328. https://doi.org/10.1089/cbr.2019.3021
  77. Muzaail H.H., El-Assmy A., Harraz A.M. et al. Prediction of recurrence of non-muscle invasive bladder cancer: The role of androgen receptor and miRNA-2909 // Urol. Oncol. 2022. V. 40. P. 197. https://doi.org/10.1016/j.urolonc.2022.03.004
  78. Li X., Liang Z., Pan J. et al. Identification of BACH1-IT2-miR-4786-Siglec-15 immune suppressive axis in bladder cancer // BMC Cancer. 2024. V. 24. P. 328. https://doi.org/10.1186/s12885-024-12061-8
  79. Stempor P.A., Avni D., Leibowitz R. et al. Comprehensive analysis of correlations in the expression of miRNA genes and immune checkpoint genes in bladder cancer cells // Int. J. Mol. Sci. 2021. V. 22. https://doi.org/10.3390/ijms22052553
  80. De Koning A.P., Gu W., Castoe T.A. et al. Repetitive elements may comprise over two–thirds of the human genome // PLoS Genetics. 2011. V. 7. P. e1002384.
  81. Zhang J., Sun W., Ren C. et al. A PolH transcript with a short 3'UTR enhances PolH expression and mediates cisplatin resistance // Cancer Res. 2019. V. 79. P. 3714–3724. https://doi.org/10.1158/0008-5472.CAN-18-3928
  82. Luo L., Miao P., Ming Y. et al. Circ-ZFR promotes progression of bladder cancer by upregulating WNT5A Via sponging miR-545 and miR-1270 // Front. Oncol. 2021. V. 10. https://doi.org/10.3389/fonc.2020.596623
  83. Sun S., Liu F., Xian S., Cai D. MiR-325-3p overexpression inhibits proliferation and metastasis of bladder cancer cells by regulating MT3 // Med. Sci. Monit. 2020. V. 26. https://doi.org/10.12659/MSM.920331
  84. Tian Y., Guan Y., Su Y. et al. MiR-582-5p inhibits bladder cancer-genesis by suppressing TTK expression // Cancer Manag. Res. 2020. V. 20. P. 11933–11944. https://doi.org/10.2147/CMAR.S274835
  85. Park E.G., Lee D.H., Kim W.R. et al. Human endogenous retrovirus-H-derived miR-4454 inhibits the expression of DNAJB4 and SASH1 in non-muscle-invasive bladder cancer // Genes (Basel). 2023. V. 14. https://doi.org/10.3390/genes14071410
  86. Neuhausen A., Florl A.R., Grimm M.O., Schulz W.A. DNA methylation alterations in urothelial carcinoma // Cancer Biol. Ther. 2006. V. 5. P. 993–1001. https://doi.org/10.4161/cbt.5.8.2885
  87. Wilhelm C.S., Kelsey K.T., Butler R. et al. Implications of LINE1 methylation for bladder cancer risk in wo-men // Clin. Cancer Res. 2010. V. 16. P. 1682–1689. https://doi.org/10.1158/1078-0432.CCR-09-2983
  88. Cash H.L., Tao L., Yuan J.M. et al. LINE-1 hypomethylation is associated with bladder cancer risk among nonsmoking Chinese // Int. J. Cancer. 2012. V. 130. P. 1151–1159. https://doi.org/10.1002/ijc.26098
  89. Andreotti G., Karami S., Pfeiffer R.M. et al. LINE1 methylation levels associated with increased bladder cancer risk in pre-diagnostic blood DNA among US (PLCO) and European (ATBC) cohort study parti- cipants // Epigenetics. 2014. V. 9. P. 404–415. https://doi.org/10.4161/epi.27386
  90. Salas L.A., Villanueva C.M., Tajuddin S.M. et al. LINE-1 methylation in granulocyte DNA and trihalomethane exposure is associated with bladder cancer risk // Epigenetics. 2014. V. 9. P. 1532–1539. https://doi.org/10.4161/15592294.2014.983377
  91. Kreimer U., Schulz W.A., Koch A. et al. HERV-K and LINE-1 DNA methylation and reexpression in urothelial carcinoma // Front. Oncol. 2013. V. 3. https://doi.org/10.3389/fonc.2013.00255
  92. Patchsung M., Boonla C., Amnattrakul P. et al. Long interspersed nuclear element-1 hypomethylation and oxidative stress: correlation and bladder cancer diagnostic potential // PLoS One. 2012. V. 7. https://doi.org/10.1371/journal.pone.0037009
  93. Wongpaiboonwattana W., Tosukhowong P., Dissayabut- ra T. et al. Oxidative stress induces hypomethylation of LINE-1 and hypermethylation of the RUNX3 promoter in a bladder cancer cell line // Asian Pac. J. Cancer Prev. 2013. V. 14. P. 3773–3778. https://doi.org/10.7314/apjcp.2013.14.6.3773
  94. Jaguva Vasudevan A.A., Kreimer U., Schulz W.A. et al. APOBEC3B activity is prevalent in urothelial carcinoma cells and only slightly affected by LINE-1 expression // Front. Microbiol. 2018. V. 9. https://doi.org/10.3389/fmicb.2018.02088
  95. Wang Z., Ying Y., Wang M. et al. Comprehensive identification of onco-exaptation events in bladder cancer cell lines revealed L1PA2-SYT1 as a prognosis-relevant event // Science. 2023. V. 26. https://doi.org/10.1016/j.isci.2023.108482
  96. Atala A. Re: Mutations in 3'-long terminal repeat of HERV-W family in chromosome 7 upregulate syncytin-1 expression in urothelial cell carcinoma of the bladder through interacting with c-Myb // J. Urol. 2015. V. 193. P. 1061. https://doi.org/10.1016/j.juro.2014.12.031
  97. Stricker E., Peckham-Gregory E.C., Scheurer M.E. CancerHERVdb: Human endogenous retrovirus (HERV) expression database for human cancer accelerates studies of the retrovirome and predictions for HERV-based therapies // J. Virol. 2023. V. 97. https://doi.org/10.1128/jvi.00059-23 https://doi.org/

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Russian Academy of Sciences, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».