Mechanisms of epigenetic factors involvement in the development of bladder cancer
- Autores: Mustafin R.N.1, Gilyazova I.R.1, Mustafin S.A.1, Khusnutdinova E.K.2
-
Afiliações:
- Bashkir State Medical University
- Institute of Biochemistry and Genetics, Ufa Federal Research Centre, Russian Academy of Sciences
- Edição: Volume 61, Nº 10 (2025)
- Páginas: 14-28
- Seção: ОБЗОРНЫЕ И ТЕОРЕТИЧЕСКИЕ СТАТЬИ
- URL: https://journals.rcsi.science/0016-6758/article/view/355168
- DOI: https://doi.org/10.7868/S3034510325100024
- ID: 355168
Citar
Resumo
Palavras-chave
Sobre autores
R. Mustafin
Bashkir State Medical University
Email: ruji79@mail.ru
Ufa, 450008 Russia
I. Gilyazova
Bashkir State Medical UniversityUfa, 450008 Russia
S. Mustafin
Bashkir State Medical UniversityUfa, 450008 Russia
E. Khusnutdinova
Institute of Biochemistry and Genetics, Ufa Federal Research Centre, Russian Academy of SciencesUfa, 450054 Russia
Bibliografia
- Zhang Y., Rumgay H., Li M. et al. The global landscape of bladder cancer incidence and mortality in 2020 and projections to 2040 // J. Glob. Health. 2023. V. 13. https://doi.org/10.7189/jogh.13.04109
- Павлов В.Н., Измайлов А.А., Викторова Т.В. и др. // Эксперим. и клин. урология. 2010. T. 2. C. 30–33.
- Алексеев Б.Я., Андреева Ю.Ю., Новикова И.В. Факторы прогноза выживаемости у больных немышечно-инвазивным раком мочевого пузыря // Онкоурология. 2013. Т. 1. С. 34–42.
- Tran L., Xiao J.F., Agarwal N. et al. Advances in bladder cancer biology and therapy // Nat. Rev. Cancer. 2021. V. 21. P. 104–121. https://doi.org/10.1038/s41568-020-00313-1
- Гладков О.А., Булычкин П.В., Волкова М.И. и др. Практические рекомендации по лекарственному лечению рака мочевого пузыря. Практические рекомендации RUSSCO, часть 1 // Злокачественные опухоли. 2023. Т. 13. С. 620–639.
- Long C., Shi H., Li J. et al. The diagnostic accuracy of urine-derived exosomes for bladder cancer: А systematic review and meta-analysis // World J. Surg. Oncol. 2024. V. 22. P. 285. https://doi.org/10.1186/s12957-024-03569-1
- Dianatinasab M., Forozani E., Akbari A. et al. Dietary patterns and risk of bladder cancer: A systematic review and meta-analysis // BMC Publ. Health. 2022. V. 22. P. 73. https://doi.org/10.1186/s12889-022-12516-2
- Zhao X., Wang Y., Liang C. Cigarette smoking and risk of bladder cancer: a dose-response meta-analysis // Int. Urol. Nephrol. 2022. V. 54. P. 1169–1185. https://doi.org/10.1007/s11255-022-03173-w
- Wang X., Lin Y.W., Wang S. et al. A meta-analysis of tea consumption and the risk of bladder cancer // Urol. Int. 2013. V. 90. P. 10–16. https://doi.org/10.1159/000342804
- Sun J.X., Xu J.Z., Liu C.Q. et al. The association between human papillomavirus and bladder cancer: Evidence from meta-analysis and two-sample mendelian randomization // J. Med. Virol. 2023. V. 95. https://doi.org/10.1002/jmv.28208
- Motlaghzadeh S., Tabatabaei F., Eshragh F. et al. Association of viral infection with bladder cancer: A systematic review and meta-analysis // Pathol. Res. Pract. 2024. V. 264. https://doi.org/10.1016/j.prp.2024.155633.
- Isali I., McClellan P., Calaway A. et al. Gene network profiling in muscle-invasive bladder cancer: A systematic review and meta-analysis // Urol. Oncol. 2022. V. 40. P. 197. https://doi.org/10.1016/j.urolonc.2021.11.003
- Galesloot T.E., Grotenhuis A.J., Kolev D. et al. Genome-wide meta-analysis identifies novel genes associated with recurrence and progression in non-muscle-invasive bladder cancer // Eur. Urol. Oncol. 2022. V. 5(1). V. 70–83. https://doi.org/10.1016/j.euo.2021.07.001
- Koutros S., Kiemeney L.A., Pal Choudhury P. et al. Genome-wide association study of bladder cancer reveals new biological and translational insights // Eur. Urol. 2023. V. 84. P. 127–137. https://doi.org/10.1016/j.eururo.2023.04.020
- Yong S.Y., Raben T.G., Lello L., Hsu S.D.H. Genetic architecture of complex traits and disease risk predictors // Sci. Rep. 2020. V. 10. P. 12055. https://doi.org/10.1038/s41598-020-68881-8
- Nurk S., Koren S., Rhie A. et al. The complete sequence of a human genome // Science. 2022. V. 376. Р. 44–53. https://doi.org/10.1126/science.abj6987
- Park E.G., Ha H., Lee D.H. et al. Genomic analyses of non-coding RNAs overlapping transposable elements and its implication to human diseases // Int. J. Mol. Sci. 2022. V. 23. https://doi.org/10.3390/ijms23168950
- Zhang L., Zhang M., Wang H. et al. Comprehensive review of genetic association studies and meta-analysis on polymorphisms in microRNAs and urological neoplasms Risk // Sci. Rep. 2018. V. 8. P. 3776. https://doi.org/10.1038/s41598-018-21749-4
- Annapragada A.V., Niknafs N., White J.R. et al. Genome-wide repeat landscapes in cancer and cell-free DNA // Sci. Transl. Med. 2024. V. 16. https://doi.org/10.1126/scitranslmed.adj9283
- Whongsiri P., Goering W., Lautwein T. et al. Many different LINE-1 retroelements are activated in bladder cancer // Int. J. Mol. Sci. 2020. V. 21(24). https://doi.org/10.3390/ijms21249433
- Gosenca D., Gabriel U., Steidler A. et al. HERV-E-mediated modulation of PLA2G4A transcription in urothelial carcinoma // PLoS One. 2012. V. 7. https://doi.org/10.1371/journal.pone.0049341
- De Souza F.S., Franchini L.F., Rubinstein M. Exaptation of transposable elements into novel cis-regulatory elements: Is the evidence always strong // Mol. Biol. Evol. 2013. V. 30. P. 1239–1251.
- Li X., Bie L., Wang Y. et al. LINE-1 transcription activates long-range gene expression // Nat. Genet. 2024. V. 56. P. 1494–1502. https://doi.org/10.1038/s41588-024-01789-5
- Мустафин Р.Н., Хуснутдинова Э.К. Некодирующие части генома как основа эпигенетической наследственности // Вавил. журн. генетики и селекции. 2017. Т. 21. № 6. С. 742–749. https://doi.org/10.18699/10.18699/VJ17.30-o
- Мустафин Р.Н. Влияние ретроэлементов на онкогены и онкосупрессоры в канцерогенезе // Соврем. онкология. 2021. Т. 23. № 4. С. 666–673.
- Chen X., Zhang J., Ruan W. et al. Urine DNA methylation assay enables early detection and recurrence monitoring for bladder cancer // J. Clin. Invest. 2020. V. 130. P. 6278–6289. https://doi.org/10.1172/JCI139597
- Chalertpet K., Pin-On P., Aporntewan C. et al. Argonaute 4 as an effector protein in RNA-Directed DNA methylation in human cells // Front. Genet. 2019. V. 10. https://doi.org/10.3389/fgene.2019.00645
- Watcharanurak P., Mutirangura A. Human RNA-directed DNA methylation methylates high-mobility group box 1 protein-produced DNA gaps // Epigenomics. 2022. V. 14. P. 741–756. https://doi.org/10.2217/epi-2022-0022
- Mehmandar-Oskuie A., Jahankhani K., Rostamlou A. et al. Molecular landscape of LncRNAs in bladder cancer: From drug resistance to novel LncRNA-based therapeutic strategies // Biomed. Pharmacother. 2023. V. 165. https://doi.org/10.1016/j.biopha.2023.115242
- Honson D.D., Macfarlan T.S. A lncRNA-like role for LINE1s in development // Dev. Cell. 2018. V. 46 (20). P. 132–134.
- Lu X., Sachs F., Ramsay L. et al. The retrovirus HERVH is a long noncoding RNA required for human embryonic stem cell identity // Nat. Struct. Mol. Biol. 2014. V. 21. P. 423–425.
- Wang Y., Sun Q., Ji L. et al. lncRNA MORT regulates bladder cancer behaviors by downregulating microRNA-146a-5p // Nephron. 2020. V. 144. P. 351–357. https://doi.org/10.1159/000506291
- Ding Z., Ying W., He Y. et al. lncRNA-UCA1 in the diagnosis of bladder cancer: A meta-analysis // Medi- cine (Baltimore). 2021. V. 100. e24805. https://doi.org/10.1097/MD.0000000000024805.
- He S., Xu J., Chen M. et al. A meta-analysis of UCA1 accuracy in the detection of bladder cancer // Expert. Rev. Anticancer Ther. 2024. V. 24. P. 447–455. https://doi.org/10.1080/14737140.2024.2342528
- Su Y., Chen H., Yao L. et al. The relationship between the expression of lncRNA MALAT1 and clinical features and prognosis in bladder cancer: A meta-analysis // Cell Mol. Biol. 2023. V. 69. P. 166–171. https://doi.org/10.14715/cmb/2023.69.14.27
- Chen C., Zheng H., Luo Y. et al. SUMOylation promotes extracellular vesicle-mediated transmission of lncRNA ELNAT1 and lymph node metastasis in bladder cancer // J. Clin. Invest. 2021. V. 131. https://doi.org/10.1172/JCI146431
- Li Z., Fu H., Liu J. et al. LncRNA PVT1 promotes bladder cancer progression by forming a positive feedback loop with STAT5B // Pathol. Res. Pract. 2023. V. 248. https://doi.org/10.1016/j.prp.2023.154635.
- Mustafin R.N. The relationship of transposable elements with non-coding RNAs in emergence of human proteins and peptides // Current Proteomics. 2024. V. 21. P. 140–161. https://doi.org/10.2174/0115701646319572240805103747
- Luo H., Xu C., Le W. et al. lncRNA CASC11 promotes cancer cell proliferation in bladder cancer through miRNA-150 // J. Cell Biochem. 2019. V. 120. P. 13487–13493. https://doi.org/10.1002/jcb.28622
- Rui X., Wang L., Pan H. et al. LncRNA GAS6-AS2 promotes bladder cancer proliferation and metastasis via GAS6-AS2/miR-298/CDK9 axis // J. Cell. Mol. Med. 2019. V. 23. P. 865–876. https://doi.org/10.1111/jcmm.13986
- Xu G., Yang H., Liu M. et al. lncRNA TINCR facilities bladder cancer progression via regulating miR-7 and mTOR // Mol. Med. Rep. 2020. V. 22. P. 4243–4253. https://doi.org/10.3892/mmr.2020.11530.
- Luo W., Wang J., Xu W. et al. LncRNA RP11-89 facilitates tumorigenesis and ferroptosis resistance through PROM2-activated iron export by sponging miR-129-5p in bladder cancer // Cell Death Dis. 2021. V. 12. P. 1043. https://doi.org/10.1038/s41419-021-04296-1
- Li Y., Shi B., Dong F. et al. LncRNA KCNQ1OT1 facilitates the progression of bladder cancer by targeting MiR-218-5p/HS3ST3B1 // Cancer Gene Ther. 2021. V. 28(3–4). P. 212–220. https://doi.org/10.1038/s41417-020-00211-6
- Zhang W., Zhang J., Hu Z. et al. LncRNA ARAP1-AS1 promotes bladder cancer development by regulating the miR-3918/KIF20A axis // Mol. Biotechnol. 2022. V. 64(11). P. 1259–1269. https://doi.org/10.1007/s12033-022-00489-x
- Han Z., Tian Y., Liu Q. et al. LncRNA PTAR activates the progression of bladder cancer by modulating miR-299-3p/CD164 axis // Pathol. Res. Pract. 2022. V. 237. https://doi.org/10.1016/j.prp.2022.153994
- Zheng R., Gao F., Mao Z. et al. LncRNA BCCE4 cenetically enhances the PD-L1/PD-1 interaction in smoking-related bladder cancer by modulating miR-328-3p-USP18 signaling // Adv. Sci. (Weinh). 2023. V. 10. https://doi.org/10.1002/advs.202303473
- Chakrabortty A., Patton D.J., Smith B.F., Agarwal P. miRNAs: Potential as biomarkers and therapeutic targets for cancer // Genes (Basel). 2023. V. 14. https://doi.org/10.3390/genes14071375
- Li J., Li H., Yang Y. et al. miRNA-143 as a potential biomarker in the detection of bladder cancer: a meta-analysis // Future Oncol. 2024. V. 20. P. 1275–1287. https://doi.org/10.2217/fon-2023-0922.
- Jiang L., Sun G., Zou L. et al. Noncoding RNAs as a potential biomarker for the prognosis of bladder cancer: A systematic review and meta-analysis // Expert Rev. Mol. Diagn. 2023. V. 23(4). P. 325–334. https://doi.org/10.1080/14737159.2023.2195554
- Mei Y., Zheng J., Xiang P. et al. Prognostic value of the miR-200 family in bladder cancer: A systematic review and meta-analysis // Medicine (Baltimore). 2020. V. 99. e22891. https://doi.org/10.1097/MD.0000000000022891.
- Yang F.R., Li H.J., Li T.T. et al. Prognostic value of MicroRNA-15a in human cancers: A meta-analysis and bioinformatics // Biomed. Res. Int. 2019. V. 2019. https://doi.org/10.1155/2019/2063823
- Kaba M., Pirinççi N., Demir M. et al. The relationship between microRNAs and bladder cancer: Are microRNAs useful to predict bladder cancer in suspicious patients // Int. Urol. Nephrol. 2023. V. 55. P. 2483–2491. https://doi.org/10.1007/s11255-023-03666-2
- Armstrong D.A., Green B.B., Seigne J.D. et al. MicroRNA molecular profiling from matched tumor and bio-fluids in bladder cancer // Mol. Cancer. 2015. V. 14. P. 194. https://doi.org/10.1186/s12943-015-0466-2
- Ren W., Hu J., Li H. et al. MiR-616-5p promotes invasion and migration of bladder cancer via downregula- ting NR2C2 expression // Front. Oncol. 2021. V. 11. https://doi.org/10.3389/fonc.2021.762946
- Dong W., Bi J., Liu H. et al. Circular RNA ACVR2A suppresses bladder cancer cells proliferation and metastasis through miR-626/EYA4 axis // Mol. Cancer. 2019. V. 18. P. 95. https://doi.org/10.1186/s12943-019-1025-z
- Song T., Zhang X., Zhang L. et al. MiR-708 promotes the development of bladder carcinoma via direct repression of Caspase-2 // J. Cancer Res. Clin. Oncol. 2013. V. 139. P. 1189–1198. https://doi.org/10.1007/s00432-013-1392-6
- Liu C.P., Zhang J.H., Zheng S.C. et al. A novel clinical multidimensional transcriptome signature predicts prognosis in bladder cancer // Oncol. Rep. 2018. V. 40. P. 2826–2835. https://doi.org/10.3892/or.2018.6677
- Tölle A., Jung M., Rabenhorst S. et al. Identification of microRNAs in blood and urine as tumour markers for the detection of urinary bladder cancer // Oncol. Rep. 2013. V. 30. P. 1949–1956. https://doi.org/10.3892/or.2013.2621
- Zhu J., Luo Y., Zhao Y. et al. CircEHBP1 promotes lymphangiogenesis and lymphatic metastasis of bladder cancer via miR-130a-3p/TGFβR1/VEGF-D signaling // Mol. Ther. 2021. V. 29. P. 1838–1852. https://doi.org/10.1016/j.ymthe.2021.01.031
- Chen Y., Zhang W., Shen L. et al. Downregulation of long noncoding RNA LUCAT1 suppresses the migration and invasion of bladder cancer by targeting miR-181c-5p // Biomed. Res. Int. 2020. V. 2020. https://doi.org/10.1155/2020/4817608
- Lin T., Zhou S., Gao H. et al. MicroRNA-325 is a potential biomarker and tumor regulator in human bladder cancer // Technol. Cancer Res. Treat. 2018. V. 17. https://doi.org/10.1177/1533033818790536
- Chen X., Jia C., Jia C. et al. MicroRNA-374a inhibits aggressive tumor biological behavior in bladder carcinoma by suppressing Wnt/β-Catenin signaling // Cell Physiol. Biochem. 2018. V. 48. P. 815–826. https://doi.org/10.1159/000491911
- Zhu J., Huang Y., Zhang Y. et al. KCNMB2-AS1 promotes bladder cancer progression through sponging miR-374a-3p to upregulate S100A10 // Front. Genet. 2021. V. 12. https://doi.org/10.3389/fgene.2021.655569
- Ueno K., Hirata H., Majid S. et al. Tumor suppressor microRNA-493 decreases cell motility and migration ability in human bladder cancer cells by downregula- ting RhoC and FZD4 // Mol. Cancer Ther. 2012. V. 11. P. 244–253. https://doi.org/10.1158/1535-7163.MCT-11-0592
- Guo C., Li X., Xie J. et al. Long noncoding RNA SNHG1 activates autophagy and promotes cell invasion in bladder cancer // Front. Oncol. 2021. V. 13(11). https://doi.org/10.3389/fonc.2021.660551
- Liang Z., Li S., Xu X. et al. MicroRNA-576-3p inhibits proliferation in bladder cancer cells by targeting cyc- lin D1 // Mol. Cells. 2015. V. 38. P. 130–137. https://doi.org/10.14348/molcells.2015.2146
- Meng F.M., Meng F.M., Song X.L. MiR-576-3p is a novel marker correlated with poor clinical outcome in bladder cancer // Eur. Rev. Med. Pharmacol. Sci. 2017. V. 21. P. 973–977.
- Wang C., Yang X. CircRAPGEF5 sponges miR-582-3p and targets KIF3A to regulate bladder cancer cell proliferation, migration and invasion // Int. Immunopharmacol. 2024. V. 131. https://doi.org/10.1016/j.intimp.2024.111613
- Lu P., Jiang Y., Xia Z. Long noncoding RNA TUG1 decreases bladder cancer chemo-sensitivity toward doxorubicin through elevating KPNA2 expression and activating the PI3K/AKT pathway via adsorbing miR-582-5p // Anticancer Drugs. 2023. V. 34. P. 144–154. https://doi.org/10.1097/CAD.0000000000001393
- Wu J., Li W., Ning J. et al. Long noncoding RNA UCA1 targets miR-582-5p and contributes to the progression and drug resistance of bladder cancer cells through ATG7-mediated autophagy inhibition // Onco Targets Ther. 2024. V. 17. P. 603–604. https://doi.org/10.2147/OTT.S488460
- Yin Y.W., Liu K.L., Lu B.S. et al. RBM24 exacerbates bladder cancer progression by forming a Runx1t1/TCF4/miR-625-5p feedback loop // Exp. Mol. Med. 2021. V. 53. P. 933–946. https://doi.org/10.1038/s12276-021-00623-w
- Xiao Y., Wang T., Cheng X. et al. LINC00958 inhibits autophagy of bladder cancer cells via sponge adsorption of miR-625-5p to promote tumor angiogenesis and oxidative stress // Oxid. Med. Cell Longev. 2022. V. 2022. https://doi.org/10.1155/2022/2435114
- Wang K.J., Ye S.Z., Jia X.L. et al. RON receptor tyrosine kinase as a critical determinant in promoting tumorigenic behaviors of bladder cancer cells through regulating MMP12 and HIF-2α pathways // Cell Death Dis. 2024. V. 15. P. 844. https://doi.org/10.1038/s41419-024-07245-w
- Xu R., Li H., Wu S. et al. MicroRNA-1246 regulates the radio-sensitizing effect of curcumin in bladder cancer cells via activating P53 // Int. Urol. Nephrol. 2019. V. 51. P. 1771–1779. https://doi.org/10.1007/s11255-019-02210-5
- Liu Q., Zhou Q., Zhong P. Circ_0067934 increases bladder cancer cell proliferation, migration and invasion through suppressing miR-1304 expression and increasing Myc expression levels // Exp. Ther. Med. 2020. V. 19. P. 3751–3759. https://doi.org/10.3892/etm.2020.8648
- Chen D., Chen J., Gao J. et al. LncRNA DDX11-AS1 promotes bladder cancer occurrence via protec- ting LAMB3 from downregulation by sponging miR-2355-5p // Cancer Biother. Radiopharm. 2020. V. 35. P. 319–328. https://doi.org/10.1089/cbr.2019.3021
- Muzaail H.H., El-Assmy A., Harraz A.M. et al. Prediction of recurrence of non-muscle invasive bladder cancer: The role of androgen receptor and miRNA-2909 // Urol. Oncol. 2022. V. 40. P. 197. https://doi.org/10.1016/j.urolonc.2022.03.004
- Li X., Liang Z., Pan J. et al. Identification of BACH1-IT2-miR-4786-Siglec-15 immune suppressive axis in bladder cancer // BMC Cancer. 2024. V. 24. P. 328. https://doi.org/10.1186/s12885-024-12061-8
- Stempor P.A., Avni D., Leibowitz R. et al. Comprehensive analysis of correlations in the expression of miRNA genes and immune checkpoint genes in bladder cancer cells // Int. J. Mol. Sci. 2021. V. 22. https://doi.org/10.3390/ijms22052553
- De Koning A.P., Gu W., Castoe T.A. et al. Repetitive elements may comprise over two–thirds of the human genome // PLoS Genetics. 2011. V. 7. P. e1002384.
- Zhang J., Sun W., Ren C. et al. A PolH transcript with a short 3'UTR enhances PolH expression and mediates cisplatin resistance // Cancer Res. 2019. V. 79. P. 3714–3724. https://doi.org/10.1158/0008-5472.CAN-18-3928
- Luo L., Miao P., Ming Y. et al. Circ-ZFR promotes progression of bladder cancer by upregulating WNT5A Via sponging miR-545 and miR-1270 // Front. Oncol. 2021. V. 10. https://doi.org/10.3389/fonc.2020.596623
- Sun S., Liu F., Xian S., Cai D. MiR-325-3p overexpression inhibits proliferation and metastasis of bladder cancer cells by regulating MT3 // Med. Sci. Monit. 2020. V. 26. https://doi.org/10.12659/MSM.920331
- Tian Y., Guan Y., Su Y. et al. MiR-582-5p inhibits bladder cancer-genesis by suppressing TTK expression // Cancer Manag. Res. 2020. V. 20. P. 11933–11944. https://doi.org/10.2147/CMAR.S274835
- Park E.G., Lee D.H., Kim W.R. et al. Human endogenous retrovirus-H-derived miR-4454 inhibits the expression of DNAJB4 and SASH1 in non-muscle-invasive bladder cancer // Genes (Basel). 2023. V. 14. https://doi.org/10.3390/genes14071410
- Neuhausen A., Florl A.R., Grimm M.O., Schulz W.A. DNA methylation alterations in urothelial carcinoma // Cancer Biol. Ther. 2006. V. 5. P. 993–1001. https://doi.org/10.4161/cbt.5.8.2885
- Wilhelm C.S., Kelsey K.T., Butler R. et al. Implications of LINE1 methylation for bladder cancer risk in wo-men // Clin. Cancer Res. 2010. V. 16. P. 1682–1689. https://doi.org/10.1158/1078-0432.CCR-09-2983
- Cash H.L., Tao L., Yuan J.M. et al. LINE-1 hypomethylation is associated with bladder cancer risk among nonsmoking Chinese // Int. J. Cancer. 2012. V. 130. P. 1151–1159. https://doi.org/10.1002/ijc.26098
- Andreotti G., Karami S., Pfeiffer R.M. et al. LINE1 methylation levels associated with increased bladder cancer risk in pre-diagnostic blood DNA among US (PLCO) and European (ATBC) cohort study parti- cipants // Epigenetics. 2014. V. 9. P. 404–415. https://doi.org/10.4161/epi.27386
- Salas L.A., Villanueva C.M., Tajuddin S.M. et al. LINE-1 methylation in granulocyte DNA and trihalomethane exposure is associated with bladder cancer risk // Epigenetics. 2014. V. 9. P. 1532–1539. https://doi.org/10.4161/15592294.2014.983377
- Kreimer U., Schulz W.A., Koch A. et al. HERV-K and LINE-1 DNA methylation and reexpression in urothelial carcinoma // Front. Oncol. 2013. V. 3. https://doi.org/10.3389/fonc.2013.00255
- Patchsung M., Boonla C., Amnattrakul P. et al. Long interspersed nuclear element-1 hypomethylation and oxidative stress: correlation and bladder cancer diagnostic potential // PLoS One. 2012. V. 7. https://doi.org/10.1371/journal.pone.0037009
- Wongpaiboonwattana W., Tosukhowong P., Dissayabut- ra T. et al. Oxidative stress induces hypomethylation of LINE-1 and hypermethylation of the RUNX3 promoter in a bladder cancer cell line // Asian Pac. J. Cancer Prev. 2013. V. 14. P. 3773–3778. https://doi.org/10.7314/apjcp.2013.14.6.3773
- Jaguva Vasudevan A.A., Kreimer U., Schulz W.A. et al. APOBEC3B activity is prevalent in urothelial carcinoma cells and only slightly affected by LINE-1 expression // Front. Microbiol. 2018. V. 9. https://doi.org/10.3389/fmicb.2018.02088
- Wang Z., Ying Y., Wang M. et al. Comprehensive identification of onco-exaptation events in bladder cancer cell lines revealed L1PA2-SYT1 as a prognosis-relevant event // Science. 2023. V. 26. https://doi.org/10.1016/j.isci.2023.108482
- Atala A. Re: Mutations in 3'-long terminal repeat of HERV-W family in chromosome 7 upregulate syncytin-1 expression in urothelial cell carcinoma of the bladder through interacting with c-Myb // J. Urol. 2015. V. 193. P. 1061. https://doi.org/10.1016/j.juro.2014.12.031
- Stricker E., Peckham-Gregory E.C., Scheurer M.E. CancerHERVdb: Human endogenous retrovirus (HERV) expression database for human cancer accelerates studies of the retrovirome and predictions for HERV-based therapies // J. Virol. 2023. V. 97. https://doi.org/10.1128/jvi.00059-23 https://doi.org/
Arquivos suplementares

