Эпигенетика агрессии: современные достижения и перспективы на животных моделях
- Авторы: Дудко Н.А.1,2, Нуриева Г.Н.1, Кунижева С.С.1,2, Кузнецова И.Л.2
-
Учреждения:
- Центр генетики и наук о жизни, Научно-технологический университет «Сириус»
- Институт общей генетики им. Н.И. Вавилова Российской академии наук
- Выпуск: Том 61, № 10 (2025)
- Страницы: 3-13
- Раздел: ОБЗОРНЫЕ И ТЕОРЕТИЧЕСКИЕ СТАТЬИ
- URL: https://journals.rcsi.science/0016-6758/article/view/355167
- DOI: https://doi.org/10.7868/S3034510325100019
- ID: 355167
Цитировать
Аннотация
Ключевые слова
Об авторах
Н. А. Дудко
Центр генетики и наук о жизни, Научно-технологический университет «Сириус»; Институт общей генетики им. Н.И. Вавилова Российской академии наук
Email: dudko@rogaevlab.ru
Краснодарский край, пгт. Сириус, 354340 Россия; Москва, 119991 Россия
Г. Н. Нуриева
Центр генетики и наук о жизни, Научно-технологический университет «Сириус»Краснодарский край, пгт. Сириус, 354340 Россия
С. С. Кунижева
Центр генетики и наук о жизни, Научно-технологический университет «Сириус»; Институт общей генетики им. Н.И. Вавилова Российской академии наукКраснодарский край, пгт. Сириус, 354340 Россия; Москва, 119991 Россия
И. Л. Кузнецова
Институт общей генетики им. Н.И. Вавилова Российской академии наукМосква, 119991 Россия
Список литературы
- Thornton L.C., Frick P.J., Crapanzano A.M. et al. The incremental utility of callous-unemotional traits and conduct problems in predicting aggression and bul- lying in a community sample of boys and girls // Psychol. Assessment. 2013. V. 25. № 2. P. 366–378. https://doi.org/10.1037/a0031153
- Lindenfors P., Tullberg B.S. Evolutionary aspects of aggression the importance of sexual selection // Adv. Genet. 2011. V. 75. P. 7–22. https://doi.org/10.1016/B978-0-12-380858-5.00009-5
- Liljegren M., Naasan G., Temlett J. et al. Criminal beha- vior in frontotemporal dementia and Alzheimer disease // JAMA Neurology. 2015. V. 72. № 3. P. 295–300. https://doi.org/10.1001/jamaneurol.2014.3781
- Cupaioli F.A., Zucca F.A., Caporale C. et al. The neurobiology of human aggressive behavior: Neuroima- ging, genetic, and neurochemical aspects // Progress in Neuropsychopharm. and Biol. Psychiatry. 2021. V. 106. https://doi.org/10.1016/j.pnpbp.2020.110059
- González-Giraldo Y., Camargo A., López-León S. et al. A functional SNP in MIR124-1, a brain expressed miRNA gene, is associated with aggressiveness in a Colombian sample // Eur. Psychiatry. 2015. V. 30. № 4. P. 499–503. https://doi.org/10.1016/j.eurpsy.2015.03.002
- Provençal N., Booij L., Tremblay R.E. The developmental origins of chronic physical aggression: Biolo- gical pathways triggered by early life adversity // J. Experim. Biol. 2015. V. 218. № 1. P. 123–133. https://doi.org/10.1242/jeb.111401
- Shorter J., Couch C., Huang W. et al. Genetic architecture of natural variation in Drosophila melanogaster aggressive behavior // Proc. Natl Acad. Sci. USA. 2015. V. 112. № 27. P. E3555–Е3563. https://doi.org/10.1073/pnas.1510104112
- Groothuis T.G.G., Carere C. Avian personalities: Cha- racterization and epigenesis // Neurosci. Biobehavio- ral Rev. 2005. V. 29. № 1. P. 137–150. https://doi.org/10.1016/j.neubiorev.2004.06.010
- Redina O., Babenko V., Smagin D. et al. Gene expression changes in the ventral tegmental area of male mice with alternative social behavior experience in chronic agonistic interactions // Intern. J. Mol. Sci. 2020. V. 21. № 18. P. 6599. https://doi.org/10.3390/ijms21186599
- Gardner A., Úbeda F. The meaning of intrageno- mic conflict // Nat. Ecol. Evol. 2017. V. 1. № 12. P. 1807–1815. https://doi.org/10.1038/s41559-017-0354-9
- Bresnahan S.T., Lee E., Clark L. et al. Examining pa- rent-of-origin effects on transcription and RNA me- thylation in mediating aggressive behavior in honey bees (Apis mellifera) // BMC Genomics. 2023. V. 24 № 1. P. 315. https://doi.org/10.1186/s12864-023-09411-4
- Audira G., Sarasamma S., Chen J.-R. et al. Zebrafish mutants carrying leptin a (Lepa) gene deficiency display obesity, anxiety, less aggression and fear, and circadian rhythm and color preference dysregulation // Int. J. Mol. Sci. 2018. V. 19. № 12. https://doi.org/10.3390/ijms19124038
- Fairbanks L.A., Way B.M., Breidenthal S.E. et al. Maternal and offspring dopamine D4 receptor geno- types interact to influence juvenile impulsivity in vervet monkeys // Psychol. Sci. 2012. V. 23. № 10. P. 1099–1104. https://doi.org/10.1177/0956797612444905
- Saetre P., Strandberg E., Sundgren P.-E. et al. The genetic contribution to canine personality // Genes, Brain, and Behavior. 2006. V. 5. № 3. P. 240–248. https://doi.org/10.1111/j.1601-183X.2005.00155.x
- Tuvblad C., Baker L.A. Human aggression across the lifespan: Genetic propensities and environmental moderators // Adv. Genet. 2011. V. 75. P. 171–214. https://doi.org/10.1016/B978-0-12-380858-5.00007-1
- Porsch R.M., Middeldorp C.M., Cherny S.S. et al. Longitudinal heritability of childhood aggression // Am. J. Med. Genet. Part B: Neuropsychiatric Genet. 2016. V. 171. № 5. P. 697–707. https://doi.org/10.1002/ajmg.b.32420
- Ferguson C.J. Genetic contributions to antisocial personality and behavior: A meta-analytic review from an evolutionary perspective // J. Soc. Psychol. 2010. V. 150. № 2. P. 160–180. https://doi.org/10.1080/00224540903366503
- Hudziak J.J., van Beijsterveldt C.E.M., Bartels M. et al. Individual differences in aggression: Genetic analyses by age, gender, and informant in 3-, 7-, and 10-year-old Dutch twins // Behavior Genet. 2003. V. 33. № 5. P. 575–589. https://doi.org/10.1023/a:1025782918793
- Hirata Y., Zai C.C., Nowrouzi B. et al. Study of the catechol-o-methyltransferase (Comt) gene with high aggression in children // Aggress. Behavior. 2012. V. 39. № 1. P. 45–51. https://doi.org/10.1002/ab.21448
- Gerra G., Garofano L., Pellegrini C. et al. Allelic association of a dopamine transporter gene polymorphism with antisocial behaviour in heroin-dependent patients // Addiction Biol. 2005. V. 10. № 3. P. 275–281. https://doi.org/10.1080/13556210500223769
- Fresan A., Camarena B., Apiquian R. et al. Association study of MAO-A and DRD4 genes in schizophrenic patients with aggressive behavior // Neuropsychobio- logy. 2007. V. 55. № 3–4. P. 171–175. https://doi.org/10.1159/000106477
- Miczek K.A., de Almeida R.M.M., Kravitz E.A. et al. Neurobiology of escalated aggression and violence // J. Neurosci. 2007. V. 27. № 44. P. 11803–11806. https://doi.org/10.1523/JNEUROSCI.3500-07.2007
- Craig D., Hart D.J., Carson R. et al. Allelic variation at the A218C tryptophan hydroxylase polymorphism influences agitation and aggression in Alzheimer’s disease // Neurosci. Letters. 2004. V. 363. № 3. P. 199–202. https://doi.org/10.1016/j.neulet.2004.02.054
- Perez-Rodriguez M.M., Weinstein S., New A.S. et al. Tryptophan-hydroxylase 2 haplotype association with borderline personality disorder and aggression in a sample of patients with personality disorders and healthy controls // J. Psychiatric Res. 2010. V. 44. № 15. P. 1075–1081. https://doi.org/10.1016/j.jpsychires.2010.03.014
- Jensen K.P., Covault J., Conner T.S. et al. A common polymorphism in serotonin receptor 1B mRNA moderates regulation by miR-96 and associates with aggressive human behaviors // Mol. Psychiatry. 2009. V. 14. № 4. P. 381–389. https://doi.org/10.1038/mp.2008.15
- Banlaki Z., Elek Z., Nanasi T. et al. Polymorphism in the serotonin receptor 2a (Htr2a) gene as possible predisposal factor for aggressive traits // PloS One. 2015. V. 10. № 2. https://doi.org/10.1371/journal.pone.0117792
- Reif A., Rösler M., Freitag C.M. et al. Nature and nurture predispose to violent behavior: Serotonergic genes and adverse childhood environment // Neuropsychopharmacology. 2007. V. 32. № 11. P. 2375–2383. https://doi.org/10.1038/sj.npp.1301359
- Kiive E., Laas K., Vaht M. et al. Stressful life events increase aggression and alcohol use in young carriers of the GABRA2 rs279826/rs279858 A-allele // Europ. Neuropsychopharm. 2017. V. 27. № 8. P. 816–827. https://doi.org/10.1016/j.euroneuro.2017.02.003
- Malik A.I., Zai C.C., Abu Z. et al. The role of oxytocin and oxytocin receptor gene variants in childhood-onset aggression // Genes, Brain, and Behavior. 2012. V. 11. № 5. P. 545–551. https://doi.org/10.1111/j.1601-183X.2012.00776.x
- Pappa I., St Pourcain B., Benke K. et al. A genome-wide approach to children’s aggressive behavior: The EAGLE consortium // Am. J. Med. Genet. Part B: Neuropsychiatric Genet. 2016. V. 171. № 5. P. 562–572. https://doi.org/10.1002/ajmg.b.32333
- Luppino D., Moul C., Hawes D.J. et al. Association between a polymorphism of the vasopressin 1B receptor gene and aggression in children // Psychiatric Genet. 2014. V. 24. № 5. P. 185–190. https://doi.org/10.1097/YPG.0000000000000036
- Kretschmer T., Vitaro F., Barker E.D. The association between peer and own aggression is moderated by the bdnf val-met polymorphism // J. Res. Adolescence. 2014. V. 24. № 1. P. 177–185. https://doi.org/10.1111/jora.12050
- Vaillancourt K.L., Dinsdale N.L., Hurd P.L. Estrogen receptor 1 promoter polymorphism and digit ratio in men // Am. J. Human Biol. 2012. V. 24. № 5. P. 682–689. https://doi.org/10.1002/ajhb.22297
- Rajender S., Pandu G., Sharma J.D. et al. Reduced CAG repeats length in androgen receptor gene is associated with violent criminal behavior // Int. J. Legal Med. 2008. V. 122. № 5. P. 367–372. https://doi.org/10.1007/s00414-008-0225-7
- Reif A., Jacob C.P., Rujescu D. et al. Influence of functional variant of neuronal nitric oxide synthase on impulsive behaviors in humans // Arch. General Psychiatry. 2009. V. 66. № 1. P. 41–50. https://doi.org/10.1001/archgenpsychiatry.2008.510
- Rujescu D., Giegling I., Mandelli L. et al. NOS-I and -III gene variants are differentially associated with facets of suicidal behavior and aggression-related traits // Am. J. Med. Genet. Part B: Neuropsychiatric Genet. 2008. V. 147B. № 1. P. 42–48. https://doi.org/10.1002/ajmg.b.30569
- Zhang-James Y., Fernàndez-Castillo N., Hess J.L. et al. An integrated analysis of genes and functional pathways for aggression in human and rodent models // Mol. Psychiatry. 2019. V. 24. № 11. P. 1655–1667. https://doi.org/10.1038/s41380-018-0068-7
- Kukekova A.V., Johnson J.L., Xiang X. et al. Red fox genome assembly identifies genomic regions associa ted with tame and aggressive behaviours // Nat. Ecol. Evol. 2018. V. 2. № 9. P. 1479–1491. https://doi.org/10.1038/s41559-018-0611-6
- Wang X., Pipes L., Trut L.N. et al. Genomic responses to selection for tame/aggressive behaviors in the silver fox (Vulpes vulpes) // Proc. Natl Acad. Sci. USA. 2018. V. 115. № 41. P. 10398–10403. https://doi.org/10.1073/pnas.1800889115
- Mehrmohamadi M., Sepehri M.H., Nazer N., Noro- uzi M.R. A comparative overview of epigenomic profiling methods // Front. Cell and Developm. Biol. 2021. V. 9. https://doi.org/10.3389/fcell.2021.714687
- Slotkin R.K., Martienssen R. Transposable elements and the epigenetic regulation of the genome // Nat. Rev. Genet. 2007. V. 8. № 4. P. 272–285. https://doi.org/10.1038/nrg2072
- Wu Y.-L., Lin Z.-J., Li C.-C. et al. Epigenetic regulation in metabolic diseases: Mechanisms and advances in clinical study // Signal Transduction and Targeted Therapy. 2023. V. 8. № 1. P. 1–27. https://doi.org/10.1038/s41392-023-01333-7
- Мустафин Р.Н., Казанцева А.В., Еникеева Р.Ф. и др. Эпигенетика агрессивного поведения // Генетика. 2019. Т. 55. № 9. С. 987–997. https://doi.org/10.1134/S0016675819090091
- Hoyer S.C., Eckart A., Herrel A. et al. Octopamine in male aggression of Drosophila // Current Biol. 2008. V. 18. № 3. P. 159–167. https://doi.org/10.1016/j.cub.2007.12.052
- Dierick H.A., Greenspan R.J. Serotonin and neuropeptide F have opposite modulatory effects on fly aggression // Nat. Genet. 2007. V. 39. № 5. P. 678–682. https://doi.org/10.1038/ng2029
- Mundiyanapurath S., Chan Y.-B., Leung A.K.W., Kra- vitz E.A. Feminizing cholinergic neurons in a male Drosophila nervous system enhances aggression // Fly. 2009. V. 3. № 3. P. 179–184. https://doi.org/10.4161/fly.3.3.8989
- Alekseyenko O.V., Chan Y.-B., Li R., Kravitz E.A. Single dopaminergic neurons that modulate aggression in Drosophila // Proc. Natl Acad. Sci. USA. 2013. V. 110. № 15. P. 6151–6156. https://doi.org/10.1073/pnas.1303446110
- Gupta T., Morgan H.R., Andrews J.C. et al. Me- thyl-CpG binding domain proteins inhibit interspecies courtship and promote aggression in Drosophila // Sci. Reports. 2017. V. 7. № 1. P. 1–12. https://doi.org/10.1038/s41598-017-05844-6
- Quah Y.C.R., Li D. Epigenetic modification of fruitless in the protocerebrum influences male drosophila courtship behaviour // Springer Nat. 2022. P. 569–582. https://doi.org/10.1007/978-981-16-9869-9_45
- Zhang N. Role of methionine on epigenetic modification of DNA methylation and gene expression in animals // Animal Nutrition. 2018. V. 4. № 1. P. 11–16. https://doi.org/10.1016/j.aninu.2017.08.009
- Zanandrea R., Wiprich M.T., Altenhofen S. et al. Paternal exposure to excessive methionine altered behavior and neurochemical activities in zebrafish offspring // Amino Acids. 2021. V. 53. № 7. P. 1153–1167. https://doi.org/10.1007/s00726-021-03019-2
- Smith K., Leiras C. The effectiveness and safety of Kava Kava for treating anxiety symptoms: A systematic review and analysis of randomized clinical trials // Compl. Therapies in Clin. Practice. 2018. V. 33. P. 107–117. https://doi.org/10.1016/j.ctcp.2018.09.003
- Wang D., Yang L., Wang J. et al. Behavioral and phy- siological effects of acute and chronic kava exposure in adult zebrafish // Neurotoxicol. Teratol. 2020. V. 79. https://doi.org/10.1016/j.ntt.2020.106881
- Hata K., Okano M., Lei H., Li E. Dnmt3L cooperates with the Dnmt3 family of de novo DNA methyltransferases to establish maternal imprints in mice // Development (Cambridge, England). 2002. V. 129. № 8. P. 1983–1993. https://doi.org/10.1242/dev.129.8.1983
- Lai Y.-H., Audira G., Liang S.-T. et al. Duplicated dnmt3aa and dnmt3ab dna methyltransferase genes play essential and non-overlapped functions on modulating behavioral control in zebra- fish // Genes. 2020. V. 11. № 11. P. 1322. https://doi.org/10.3390/genes11111322
- Anka I.Z., Uren Webster T.M., Berbel-Filho W.M. et al. Microbiome and epigenetic variation in wild fish with low genetic diversity // Nat. Communicat. 2024. V. 15. P. 4725. https://doi.org/10.1038/s41467-024-49162-8
- Sun D., Layman T.S., Jeong H. et al. Genome-wide variation in DNA methylation linked to developmental stage and chromosomal suppression of recombination in white-throated sparrows // Mol. Ecol. 2021. V. 30. № 14. P. 3453–3467. https://doi.org/10.1111/mec.15793
- Prichard M.R., Grogan K.E., Merritt J.R. et al. Allele-specific cis-regulatory methylation of the gene for vasoactive intestinal peptide in white-throated sparrows // Genes, Brain, and Behavior. 2022. V. 21. № 8. https://doi.org/10.1111/gbb.12831
- Merritt J.R., Grogan K.E., Zinzow-Kramer W.M. et al. A supergene-linked estrogen receptor drives alternative phenotypes in a polymorphic songbird // Proc. Natl Acad. Sci. USA. 2020. V. 117. № 35. P. 21673–21680. https://doi.org/10.1073/pnas.2011347117
- Tuttle E.M. Alternative reproductive strategies in the white-throated sparrow: Behavioral and gene- tic evidence // Behavioral Ecol. 2003. V. 14. № 3. P. 425–432. https://doi.org/10.1093/beheco/14.3.425
- Bentz A.B., George E.M., Wolf S.E. et al. Experimental competition induces immediate and lasting effects on the neurogenome in free-living female birds // Proc. Natl Acad. Sci. USA. 2021. V. 118. № 13. https://doi.org/10.1073/pnas.2016154118
- Rodriguez B.A., Frankhouser D., Murphy M. et al. Methods for high-throughput MethylCap-Seq data analysis // BMC Genomics. 2012. V. 13. № 6. https://doi.org/10.1186/1471-2164-13-S6-S14
- Roth T.L., Lubin F.D., Funk A.J., Sweatt J.D. Lasting epigenetic influence of early-life adversity on the BDNF gene // Biol. Psychiatry. 2009. V. 65. № 9. P. 760–769. https://doi.org/10.1016/j.biopsych.2008.11.028
- Weaver I.C.G., Cervoni N., Champagne F.A. et al. Epigenetic programming by maternal behavior // Nat. Neurosci. 2004. V. 7. № 8. P. 847–854. https://doi.org/10.1038/nn1276
- Suderman M., McGowan P.O., Sasaki A. et al. Conserved epigenetic sensitivity to early life experience in the rat and human hippocampus // Proc. Natl Acad. Sci. USA. 2012. V. 109. Suppl. 2. P. 17266–17272. https://doi.org/10.1073/pnas.1121260109
- Franklin T.B., Russig H., Weiss I.C. et al. Epigenetic transmission of the impact of early stress across generations // Biol. Psychiatry. 2010. V. 68. № 5. P. 408–415. https://doi.org/10.1016/j.biopsych.2010.05.036
- Hernandez Carballo L.G., Li P., Senek R., Yan Z. Systemic histone deacetylase inhibition ameliorates the aberrant responses to acute stress in socially isolated male mice // J. Physiol. 2024. V. 602. № 9. P. 2047–2060. https://doi.org/10.1113/JP285875
- Matrisciano F., Pinna G. Ppar-α hypermethylation in the hippocampus of mice exposed to social isolation stress is associated with enhanced neuroinflammation and aggressive behavior // Int. J. Mol. Sci. V. 22. № 19. P. 10678. https://doi.org/10.3390/ijms221910678
- Zhang F., Rein B., Zhong P. et al. Synergistic inhibition of histone modifiers produces therapeutic effects in adult Shank3-deficient mice // Translat. Psychiatry. 2021. V. 1. № 1. P. 99. https://doi.org/10.1038/s41398-021-01233-w
- Wei J., Cheng J., Waddell N.J. et al. Dna methyltransferase 3a is involved in the sustained effects of chronic stress on synaptic functions and behaviors // Cerebral Cortex. 2021. V. 31. № 4. P. 1998–2012. https://doi.org/10.1093/cercor/bhaa337
- Chester D.S., DeWall C.N., Derefinko K.J. et al. Monoamine oxidase A (Maoa) genotype predicts greater aggression through impulsive reactivity to negative affect // Behav. Brain Res. 2015. V. 283. P. 97–101. https://doi.org/10.1016/j.bbr.2015.01.034
- Labonté B., Abdallah K., Maussion G. et al. Regulation of impulsive and aggressive behaviours by a novel lncRNA // Mol. Psychiatry. 2021. V. 26. № 8. P. 3751–3764. https://doi.org/10.1038/s41380-019-0637-4
- Konar A., Rastogi M., Bhambri A. Brain region specific methylation and Sirt1 binding changes in MAOA promoter is associated with sexual dimorphism in early life stress induced aggressive behavior // Neurochem. Intern. 2019. V. 129. https://doi.org/10.1016/j.neuint.2019.104510
- Waddell N.J., Liu Y., Chitaman J.M. et al. Transcription and DNA methylation signatures of paternal behavior in hippocampal dentate gyrus of prairie vo- les // Sci. Reports. 2023. V. 13. № 13. P. 11020. https://doi.org/10.1038/s41598-023-37521-2
- Kalbitzer U., Roos C., Kopp G.H. et al. Insights into the genetic foundation of aggression in Papio and the evolution of two length-polymorphisms in the promoter regions of serotonin-related genes (5-HTTLPR and MAOALPR) in Papionini // BMC Evol. Biol. 2016. V. 16. № 1. P. 1–15. https://doi.org/10.1186/s12862-016-0693-1
- Chen G.-L., Novak M.A., Meyer J.S. et al. The effect of rearing experience and TPH2 genotype on HPA axis function and aggression in rhesus monkeys: A retrospective analysis // Hormones and Behavior. 2010. V. 57. № 2. P. 184–191. https://doi.org/10.1016/j.yhbeh.2009.10.012
- De Leon D., Nishitani S., Walum H. et al. Methylation of OXT and OXTR genes, central oxytocin, and social behavior in female macaques // Hormones and Behavior. 2020. V. 126. https://doi.org/10.1016/j.yhbeh.2020.104856
- Cimarelli G., Virányi Z., Turcsán B. et al. Social behavior of pet dogs is associated with peripheral OXTR methylation // Front. Psychol. 2017. V. 8. https://doi.org/10.3389/fpsyg.2017.00549
- Fernàndez-Castillo N., Gan G., van Donkelaar M.M.J. et al. RBFOX1, encoding a splicing regulator, is a candidate gene for aggressive behavior // Europ. Neuropsychopharmacology. 2017. V. 30. P. 44–55. https://doi.org/10.1016/j.euroneuro.2017.11.012
- He Z.-X., Yue M.-H., Liu K.-J. et al. Substance P in the medial amygdala regulates aggressive behaviors in male mice // Neuropsychopharmacology. 2024. V. 49. № 11. P. 1689–1699. https://doi.org/10.1038/s41386-024-01863-w
- Gilani M., Abak N., Saberian M. Genetic-epigenetic-neuropeptide associations in mood and anxiety disorders: Toward personalized medicine // Pharmacol. Biochem. Behavior. 2024. V. 245. https://doi.org/10.1016/j.pbb.2024.173897
- Chen S.-D., Sun X.-Y., Niu W. et al. A preliminary analysis of microRNA-21 expression alteration after antipsychotic treatment in patients with schizophrenia // Psychiatry Res. 2016. V. 244. P. 324–332. https://doi.org/10.1016/j.psychres.2016.04.087
- Németh N., Kovács-Nagy R., Székely A. et al. Association of impulsivity and polymorphic microRNA-641 target sites in the SNAP-25 gene // PloS One. 2013. V. 8. № 12. https://doi.org/10.1371/journal.pone.0084207
- Hunter R.G., McEwen B.S. Stress and anxiety across the lifespan: Structural plasticity and epigenetic regulation // Epigenomics. 2013. V. 5. № 2. P. 177–194. https://doi.org/10.2217/epi.13.8
- Murray J.K., Kinsman R.H., Lord M.S. et al. ’Generation Pup’–Protocol for a longitudinal study of dog behaviour and health // BMC Veterinary Res. 2021. V. 17. № 1. P. 1. https://doi.org/10.1186/s12917-020-02730-8
- Belyaev D.K., Plyusnina I.Z., Trut L.N. Domestication in the silver fox (Vulpes fulvus desm): Changes in physiological boundaries of the sensitive period of primary socialization // Applied Animal Behav. Sci. 1985. V. 13. № 4. P. 359–370. https://doi.org/10.1016/0168-1591(85)90015-2
- Alexandrovich Y.V., Antonov E.V., Shikhevich S.G. et al. The expression profile of genes associated with behavior, stress, and adult neurogenesis along the hippocampal dorsoventral axis in tame and aggressive foxes // Vavil. Zh. Genet. Selekt. 2023. V. 27. № 6. P. 651–661. https://doi.org/10.18699/VJGB-23-76
- Rosenfeld C.S., Hekman J.P., Johnson J.L. et al. Hypothalamic transcriptome of tame and aggressive silver foxes (Vulpes vulpes) identifies gene expression differences shared across brain regions // Genes, Brain, and Behavior. 2020. V. 19. № 1. https://doi.org/10.1111/gbb.12614
- Babenko V.N., Bragin A.O., Chadaeva I.V. et al. Differential alternative splicing in brain regions of rats selected for aggressive behavior // Mol. Biol. 2017. V. 51. № 5. P. 759–768. https://doi.org/10.1134/S002689331705003X
- Трапезов О.В. Регуляторные эффекты генов поведения и управление окрасочным формообразованием у американских норок (Mustela vison Schreber, 1777) // Информ. вестник ВОГиС. 2008. Т. 12. № 1–2. С. 63–83. https://elibrary.ru/item.asp?id=12515806
- Манахов А.Д., Дудко Н.А., Гусев Ф.Е. и др. Генетическая вариабельность локуса гена МАОА у агрессивных животных неканонической поведенческой модели Neogale vison // Генетика. 2023. Т. 59. № 6. C. 728–732. https://doi.org/10.31857/S0016675823060097
- Дудко Н., Андреева Т., Манахов А. и др. Регуляторная геномика агрессивного поведения на неканонической модели лисы Vulpes vulpes // Четырнадцатая междунар. мультиконф. Тез. докл. Биоинформатика регуляции и структуры геномов / Cистемная биология. Новосибирск, 2024. https://doi.org/10.18699/bgrs2024-5.1-03
- Battivelli D., Fan Z., Hu H., Gross C.T. How can ethology inform the neuroscience of fear, aggression and dominance? // Nat. Rev. Neurosci. 2024. V. 25. № 12. P. 809–819. https://doi.org/10.1038/s41583-024-00858-2
- Van Dongen J., Hagenbeek F.A., Suderman M. et al. DNA methylation signatures of aggression and closely related constructs: A meta-analysis of epigenome-wide studies across the lifespan // Mol. Psychiatry. 2021. V. 26. № 6. P. 2148–2162. https://doi.org/10.1038/s41380-020-00987-x
- Zapata I., Serpell J.A., Alvarez C.E. Genetic mapping of canine fear and aggression // BMC Genomics. 2016. V. 17. № 1. Р. 572. https://doi.org/10.1186/s12864-016-2936-3 https://doi.org/
Дополнительные файлы


