Epigenetics of Aggression: Recent Advances and Perspectives on Animal Models

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Aggressive behavior is a complex trait with numerous variations. This review outlines the findings from epigenetic research conducted in recent years on different model organisms, highlighting traditional model species like Drosophila melanogaster, Mus musculus, Rattus norvegicus, and Danio rerio, in addition to natural model organisms with supergenes” linked to aggressive behavior, such as Zonotrichia albicollis and Tachycineta bicolor. Specifically, the impact of alterations in the methylation levels of VIPR1 and ACLY gene promoters, posttranslational histone modifications through enhanced acetyltransferase activity of the ncoa-1 gene, and ncRNA-driven silencing of the Maoa gene by MAALIN ncRNA was illustrated, alongside the influence of stress and medicinal plants on the epigenetic regulation of aggressive behavior. In summary, the data indicates that epigenetic alterations affecting the regulation of aggressive behavior involve multiple genes. In this context, promising research directions in the epigenetics of aggressive behavior may encompass the utilization of comprehensive genomic and omics technologies, as well as studies utilizing animal models derived from longitudinal research and specific behavioral breeding paradigms.

About the authors

N. A. Dudko

Center for Genetics and Life Science, «Sirius» University of Science and Technology»; Vavilov Institute of General Genetics of the Russian Academy of Sciences

Email: dudko@rogaevlab.ru
Krasnodar oblast, pgt. Sirius, 354340 Russia; Moscow, 119991 Russia

G. N. Nurieva

Center for Genetics and Life Science, «Sirius» University of Science and Technology»

Krasnodar oblast, pgt. Sirius, 354340 Russia

S. S. Kunizheva

Center for Genetics and Life Science, «Sirius» University of Science and Technology»; Vavilov Institute of General Genetics of the Russian Academy of Sciences

Krasnodar oblast, pgt. Sirius, 354340 Russia; Moscow, 119991 Russia

I. L. Kuznetsova

Vavilov Institute of General Genetics of the Russian Academy of Sciences

Moscow, 119991 Russia

References

  1. Thornton L.C., Frick P.J., Crapanzano A.M. et al. The incremental utility of callous-unemotional traits and conduct problems in predicting aggression and bul- lying in a community sample of boys and girls // Psychol. Assessment. 2013. V. 25. № 2. P. 366–378. https://doi.org/10.1037/a0031153
  2. Lindenfors P., Tullberg B.S. Evolutionary aspects of aggression the importance of sexual selection // Adv. Genet. 2011. V. 75. P. 7–22. https://doi.org/10.1016/B978-0-12-380858-5.00009-5
  3. Liljegren M., Naasan G., Temlett J. et al. Criminal beha- vior in frontotemporal dementia and Alzheimer disease // JAMA Neurology. 2015. V. 72. № 3. P. 295–300. https://doi.org/10.1001/jamaneurol.2014.3781
  4. Cupaioli F.A., Zucca F.A., Caporale C. et al. The neurobiology of human aggressive behavior: Neuroima- ging, genetic, and neurochemical aspects // Progress in Neuropsychopharm. and Biol. Psychiatry. 2021. V. 106. https://doi.org/10.1016/j.pnpbp.2020.110059
  5. González-Giraldo Y., Camargo A., López-León S. et al. A functional SNP in MIR124-1, a brain expressed miRNA gene, is associated with aggressiveness in a Colombian sample // Eur. Psychiatry. 2015. V. 30. № 4. P. 499–503. https://doi.org/10.1016/j.eurpsy.2015.03.002
  6. Provençal N., Booij L., Tremblay R.E. The developmental origins of chronic physical aggression: Biolo- gical pathways triggered by early life adversity // J. Experim. Biol. 2015. V. 218. № 1. P. 123–133. https://doi.org/10.1242/jeb.111401
  7. Shorter J., Couch C., Huang W. et al. Genetic architecture of natural variation in Drosophila melanogaster aggressive behavior // Proc. Natl Acad. Sci. USA. 2015. V. 112. № 27. P. E3555–Е3563. https://doi.org/10.1073/pnas.1510104112
  8. Groothuis T.G.G., Carere C. Avian personalities: Cha- racterization and epigenesis // Neurosci. Biobehavio- ral Rev. 2005. V. 29. № 1. P. 137–150. https://doi.org/10.1016/j.neubiorev.2004.06.010
  9. Redina O., Babenko V., Smagin D. et al. Gene expression changes in the ventral tegmental area of male mice with alternative social behavior experience in chronic agonistic interactions // Intern. J. Mol. Sci. 2020. V. 21. № 18. P. 6599. https://doi.org/10.3390/ijms21186599
  10. Gardner A., Úbeda F. The meaning of intrageno- mic conflict // Nat. Ecol. Evol. 2017. V. 1. № 12. P. 1807–1815. https://doi.org/10.1038/s41559-017-0354-9
  11. Bresnahan S.T., Lee E., Clark L. et al. Examining pa- rent-of-origin effects on transcription and RNA me- thylation in mediating aggressive behavior in honey bees (Apis mellifera) // BMC Genomics. 2023. V. 24 № 1. P. 315. https://doi.org/10.1186/s12864-023-09411-4
  12. Audira G., Sarasamma S., Chen J.-R. et al. Zebrafish mutants carrying leptin a (Lepa) gene deficiency display obesity, anxiety, less aggression and fear, and circadian rhythm and color preference dysregulation // Int. J. Mol. Sci. 2018. V. 19. № 12. https://doi.org/10.3390/ijms19124038
  13. Fairbanks L.A., Way B.M., Breidenthal S.E. et al. Maternal and offspring dopamine D4 receptor geno- types interact to influence juvenile impulsivity in vervet monkeys // Psychol. Sci. 2012. V. 23. № 10. P. 1099–1104. https://doi.org/10.1177/0956797612444905
  14. Saetre P., Strandberg E., Sundgren P.-E. et al. The genetic contribution to canine personality // Genes, Brain, and Behavior. 2006. V. 5. № 3. P. 240–248. https://doi.org/10.1111/j.1601-183X.2005.00155.x
  15. Tuvblad C., Baker L.A. Human aggression across the lifespan: Genetic propensities and environmental moderators // Adv. Genet. 2011. V. 75. P. 171–214. https://doi.org/10.1016/B978-0-12-380858-5.00007-1
  16. Porsch R.M., Middeldorp C.M., Cherny S.S. et al. Longitudinal heritability of childhood aggression // Am. J. Med. Genet. Part B: Neuropsychiatric Genet. 2016. V. 171. № 5. P. 697–707. https://doi.org/10.1002/ajmg.b.32420
  17. Ferguson C.J. Genetic contributions to antisocial personality and behavior: A meta-analytic review from an evolutionary perspective // J. Soc. Psychol. 2010. V. 150. № 2. P. 160–180. https://doi.org/10.1080/00224540903366503
  18. Hudziak J.J., van Beijsterveldt C.E.M., Bartels M. et al. Individual differences in aggression: Genetic analyses by age, gender, and informant in 3-, 7-, and 10-year-old Dutch twins // Behavior Genet. 2003. V. 33. № 5. P. 575–589. https://doi.org/10.1023/a:1025782918793
  19. Hirata Y., Zai C.C., Nowrouzi B. et al. Study of the catechol-o-methyltransferase (Comt) gene with high aggression in children // Aggress. Behavior. 2012. V. 39. № 1. P. 45–51. https://doi.org/10.1002/ab.21448
  20. Gerra G., Garofano L., Pellegrini C. et al. Allelic association of a dopamine transporter gene polymorphism with antisocial behaviour in heroin-dependent patients // Addiction Biol. 2005. V. 10. № 3. P. 275–281. https://doi.org/10.1080/13556210500223769
  21. Fresan A., Camarena B., Apiquian R. et al. Association study of MAO-A and DRD4 genes in schizophrenic patients with aggressive behavior // Neuropsychobio- logy. 2007. V. 55. № 3–4. P. 171–175. https://doi.org/10.1159/000106477
  22. Miczek K.A., de Almeida R.M.M., Kravitz E.A. et al. Neurobiology of escalated aggression and violence // J. Neurosci. 2007. V. 27. № 44. P. 11803–11806. https://doi.org/10.1523/JNEUROSCI.3500-07.2007
  23. Craig D., Hart D.J., Carson R. et al. Allelic variation at the A218C tryptophan hydroxylase polymorphism influences agitation and aggression in Alzheimer’s disease // Neurosci. Letters. 2004. V. 363. № 3. P. 199–202. https://doi.org/10.1016/j.neulet.2004.02.054
  24. Perez-Rodriguez M.M., Weinstein S., New A.S. et al. Tryptophan-hydroxylase 2 haplotype association with borderline personality disorder and aggression in a sample of patients with personality disorders and healthy controls // J. Psychiatric Res. 2010. V. 44. № 15. P. 1075–1081. https://doi.org/10.1016/j.jpsychires.2010.03.014
  25. Jensen K.P., Covault J., Conner T.S. et al. A common polymorphism in serotonin receptor 1B mRNA moderates regulation by miR-96 and associates with aggressive human behaviors // Mol. Psychiatry. 2009. V. 14. № 4. P. 381–389. https://doi.org/10.1038/mp.2008.15
  26. Banlaki Z., Elek Z., Nanasi T. et al. Polymorphism in the serotonin receptor 2a (Htr2a) gene as possible predisposal factor for aggressive traits // PloS One. 2015. V. 10. № 2. https://doi.org/10.1371/journal.pone.0117792
  27. Reif A., Rösler M., Freitag C.M. et al. Nature and nurture predispose to violent behavior: Serotonergic genes and adverse childhood environment // Neuropsychopharmacology. 2007. V. 32. № 11. P. 2375–2383. https://doi.org/10.1038/sj.npp.1301359
  28. Kiive E., Laas K., Vaht M. et al. Stressful life events increase aggression and alcohol use in young carriers of the GABRA2 rs279826/rs279858 A-allele // Europ. Neuropsychopharm. 2017. V. 27. № 8. P. 816–827. https://doi.org/10.1016/j.euroneuro.2017.02.003
  29. Malik A.I., Zai C.C., Abu Z. et al. The role of oxytocin and oxytocin receptor gene variants in childhood-onset aggression // Genes, Brain, and Behavior. 2012. V. 11. № 5. P. 545–551. https://doi.org/10.1111/j.1601-183X.2012.00776.x
  30. Pappa I., St Pourcain B., Benke K. et al. A genome-wide approach to children’s aggressive behavior: The EAGLE consortium // Am. J. Med. Genet. Part B: Neuropsychiatric Genet. 2016. V. 171. № 5. P. 562–572. https://doi.org/10.1002/ajmg.b.32333
  31. Luppino D., Moul C., Hawes D.J. et al. Association between a polymorphism of the vasopressin 1B receptor gene and aggression in children // Psychiatric Genet. 2014. V. 24. № 5. P. 185–190. https://doi.org/10.1097/YPG.0000000000000036
  32. Kretschmer T., Vitaro F., Barker E.D. The association between peer and own aggression is moderated by the bdnf val-met polymorphism // J. Res. Adolescence. 2014. V. 24. № 1. P. 177–185. https://doi.org/10.1111/jora.12050
  33. Vaillancourt K.L., Dinsdale N.L., Hurd P.L. Estrogen receptor 1 promoter polymorphism and digit ratio in men // Am. J. Human Biol. 2012. V. 24. № 5. P. 682–689. https://doi.org/10.1002/ajhb.22297
  34. Rajender S., Pandu G., Sharma J.D. et al. Reduced CAG repeats length in androgen receptor gene is associated with violent criminal behavior // Int. J. Legal Med. 2008. V. 122. № 5. P. 367–372. https://doi.org/10.1007/s00414-008-0225-7
  35. Reif A., Jacob C.P., Rujescu D. et al. Influence of functional variant of neuronal nitric oxide synthase on impulsive behaviors in humans // Arch. General Psychiatry. 2009. V. 66. № 1. P. 41–50. https://doi.org/10.1001/archgenpsychiatry.2008.510
  36. Rujescu D., Giegling I., Mandelli L. et al. NOS-I and -III gene variants are differentially associated with facets of suicidal behavior and aggression-related traits // Am. J. Med. Genet. Part B: Neuropsychiatric Genet. 2008. V. 147B. № 1. P. 42–48. https://doi.org/10.1002/ajmg.b.30569
  37. Zhang-James Y., Fernàndez-Castillo N., Hess J.L. et al. An integrated analysis of genes and functional pathways for aggression in human and rodent models // Mol. Psychiatry. 2019. V. 24. № 11. P. 1655–1667. https://doi.org/10.1038/s41380-018-0068-7
  38. Kukekova A.V., Johnson J.L., Xiang X. et al. Red fox genome assembly identifies genomic regions associa ted with tame and aggressive behaviours // Nat. Ecol. Evol. 2018. V. 2. № 9. P. 1479–1491. https://doi.org/10.1038/s41559-018-0611-6
  39. Wang X., Pipes L., Trut L.N. et al. Genomic responses to selection for tame/aggressive behaviors in the silver fox (Vulpes vulpes) // Proc. Natl Acad. Sci. USA. 2018. V. 115. № 41. P. 10398–10403. https://doi.org/10.1073/pnas.1800889115
  40. Mehrmohamadi M., Sepehri M.H., Nazer N., Noro- uzi M.R. A comparative overview of epigenomic profiling methods // Front. Cell and Developm. Biol. 2021. V. 9. https://doi.org/10.3389/fcell.2021.714687
  41. Slotkin R.K., Martienssen R. Transposable elements and the epigenetic regulation of the genome // Nat. Rev. Genet. 2007. V. 8. № 4. P. 272–285. https://doi.org/10.1038/nrg2072
  42. Wu Y.-L., Lin Z.-J., Li C.-C. et al. Epigenetic regulation in metabolic diseases: Mechanisms and advances in clinical study // Signal Transduction and Targeted Therapy. 2023. V. 8. № 1. P. 1–27. https://doi.org/10.1038/s41392-023-01333-7
  43. Мустафин Р.Н., Казанцева А.В., Еникеева Р.Ф. и др. Эпигенетика агрессивного поведения // Генетика. 2019. Т. 55. № 9. С. 987–997. https://doi.org/10.1134/S0016675819090091
  44. Hoyer S.C., Eckart A., Herrel A. et al. Octopamine in male aggression of Drosophila // Current Biol. 2008. V. 18. № 3. P. 159–167. https://doi.org/10.1016/j.cub.2007.12.052
  45. Dierick H.A., Greenspan R.J. Serotonin and neuropeptide F have opposite modulatory effects on fly aggression // Nat. Genet. 2007. V. 39. № 5. P. 678–682. https://doi.org/10.1038/ng2029
  46. Mundiyanapurath S., Chan Y.-B., Leung A.K.W., Kra- vitz E.A. Feminizing cholinergic neurons in a male Drosophila nervous system enhances aggression // Fly. 2009. V. 3. № 3. P. 179–184. https://doi.org/10.4161/fly.3.3.8989
  47. Alekseyenko O.V., Chan Y.-B., Li R., Kravitz E.A. Single dopaminergic neurons that modulate aggression in Drosophila // Proc. Natl Acad. Sci. USA. 2013. V. 110. № 15. P. 6151–6156. https://doi.org/10.1073/pnas.1303446110
  48. Gupta T., Morgan H.R., Andrews J.C. et al. Me- thyl-CpG binding domain proteins inhibit interspecies courtship and promote aggression in Drosophila // Sci. Reports. 2017. V. 7. № 1. P. 1–12. https://doi.org/10.1038/s41598-017-05844-6
  49. Quah Y.C.R., Li D. Epigenetic modification of fruitless in the protocerebrum influences male drosophila courtship behaviour // Springer Nat. 2022. P. 569–582. https://doi.org/10.1007/978-981-16-9869-9_45
  50. Zhang N. Role of methionine on epigenetic modification of DNA methylation and gene expression in animals // Animal Nutrition. 2018. V. 4. № 1. P. 11–16. https://doi.org/10.1016/j.aninu.2017.08.009
  51. Zanandrea R., Wiprich M.T., Altenhofen S. et al. Paternal exposure to excessive methionine altered behavior and neurochemical activities in zebrafish offspring // Amino Acids. 2021. V. 53. № 7. P. 1153–1167. https://doi.org/10.1007/s00726-021-03019-2
  52. Smith K., Leiras C. The effectiveness and safety of Kava Kava for treating anxiety symptoms: A systematic review and analysis of randomized clinical trials // Compl. Therapies in Clin. Practice. 2018. V. 33. P. 107–117. https://doi.org/10.1016/j.ctcp.2018.09.003
  53. Wang D., Yang L., Wang J. et al. Behavioral and phy- siological effects of acute and chronic kava exposure in adult zebrafish // Neurotoxicol. Teratol. 2020. V. 79. https://doi.org/10.1016/j.ntt.2020.106881
  54. Hata K., Okano M., Lei H., Li E. Dnmt3L cooperates with the Dnmt3 family of de novo DNA methyltransferases to establish maternal imprints in mice // Development (Cambridge, England). 2002. V. 129. № 8. P. 1983–1993. https://doi.org/10.1242/dev.129.8.1983
  55. Lai Y.-H., Audira G., Liang S.-T. et al. Duplicated dnmt3aa and dnmt3ab dna methyltransferase genes play essential and non-overlapped functions on modulating behavioral control in zebra- fish // Genes. 2020. V. 11. № 11. P. 1322. https://doi.org/10.3390/genes11111322
  56. Anka I.Z., Uren Webster T.M., Berbel-Filho W.M. et al. Microbiome and epigenetic variation in wild fish with low genetic diversity // Nat. Communicat. 2024. V. 15. P. 4725. https://doi.org/10.1038/s41467-024-49162-8
  57. Sun D., Layman T.S., Jeong H. et al. Genome-wide variation in DNA methylation linked to developmental stage and chromosomal suppression of recombination in white-throated sparrows // Mol. Ecol. 2021. V. 30. № 14. P. 3453–3467. https://doi.org/10.1111/mec.15793
  58. Prichard M.R., Grogan K.E., Merritt J.R. et al. Allele-specific cis-regulatory methylation of the gene for vasoactive intestinal peptide in white-throated sparrows // Genes, Brain, and Behavior. 2022. V. 21. № 8. https://doi.org/10.1111/gbb.12831
  59. Merritt J.R., Grogan K.E., Zinzow-Kramer W.M. et al. A supergene-linked estrogen receptor drives alternative phenotypes in a polymorphic songbird // Proc. Natl Acad. Sci. USA. 2020. V. 117. № 35. P. 21673–21680. https://doi.org/10.1073/pnas.2011347117
  60. Tuttle E.M. Alternative reproductive strategies in the white-throated sparrow: Behavioral and gene- tic evidence // Behavioral Ecol. 2003. V. 14. № 3. P. 425–432. https://doi.org/10.1093/beheco/14.3.425
  61. Bentz A.B., George E.M., Wolf S.E. et al. Experimental competition induces immediate and lasting effects on the neurogenome in free-living female birds // Proc. Natl Acad. Sci. USA. 2021. V. 118. № 13. https://doi.org/10.1073/pnas.2016154118
  62. Rodriguez B.A., Frankhouser D., Murphy M. et al. Methods for high-throughput MethylCap-Seq data analysis // BMC Genomics. 2012. V. 13. № 6. https://doi.org/10.1186/1471-2164-13-S6-S14
  63. Roth T.L., Lubin F.D., Funk A.J., Sweatt J.D. Lasting epigenetic influence of early-life adversity on the BDNF gene // Biol. Psychiatry. 2009. V. 65. № 9. P. 760–769. https://doi.org/10.1016/j.biopsych.2008.11.028
  64. Weaver I.C.G., Cervoni N., Champagne F.A. et al. Epigenetic programming by maternal behavior // Nat. Neurosci. 2004. V. 7. № 8. P. 847–854. https://doi.org/10.1038/nn1276
  65. Suderman M., McGowan P.O., Sasaki A. et al. Conserved epigenetic sensitivity to early life experience in the rat and human hippocampus // Proc. Natl Acad. Sci. USA. 2012. V. 109. Suppl. 2. P. 17266–17272. https://doi.org/10.1073/pnas.1121260109
  66. Franklin T.B., Russig H., Weiss I.C. et al. Epigenetic transmission of the impact of early stress across generations // Biol. Psychiatry. 2010. V. 68. № 5. P. 408–415. https://doi.org/10.1016/j.biopsych.2010.05.036
  67. Hernandez Carballo L.G., Li P., Senek R., Yan Z. Systemic histone deacetylase inhibition ameliorates the aberrant responses to acute stress in socially isolated male mice // J. Physiol. 2024. V. 602. № 9. P. 2047–2060. https://doi.org/10.1113/JP285875
  68. Matrisciano F., Pinna G. Ppar-α hypermethylation in the hippocampus of mice exposed to social isolation stress is associated with enhanced neuroinflammation and aggressive behavior // Int. J. Mol. Sci. V. 22. № 19. P. 10678. https://doi.org/10.3390/ijms221910678
  69. Zhang F., Rein B., Zhong P. et al. Synergistic inhibition of histone modifiers produces therapeutic effects in adult Shank3-deficient mice // Translat. Psychiatry. 2021. V. 1. № 1. P. 99. https://doi.org/10.1038/s41398-021-01233-w
  70. Wei J., Cheng J., Waddell N.J. et al. Dna methyltransferase 3a is involved in the sustained effects of chronic stress on synaptic functions and behaviors // Cerebral Cortex. 2021. V. 31. № 4. P. 1998–2012. https://doi.org/10.1093/cercor/bhaa337
  71. Chester D.S., DeWall C.N., Derefinko K.J. et al. Monoamine oxidase A (Maoa) genotype predicts greater aggression through impulsive reactivity to negative affect // Behav. Brain Res. 2015. V. 283. P. 97–101. https://doi.org/10.1016/j.bbr.2015.01.034
  72. Labonté B., Abdallah K., Maussion G. et al. Regulation of impulsive and aggressive behaviours by a novel lncRNA // Mol. Psychiatry. 2021. V. 26. № 8. P. 3751–3764. https://doi.org/10.1038/s41380-019-0637-4
  73. Konar A., Rastogi M., Bhambri A. Brain region specific methylation and Sirt1 binding changes in MAOA promoter is associated with sexual dimorphism in early life stress induced aggressive behavior // Neurochem. Intern. 2019. V. 129. https://doi.org/10.1016/j.neuint.2019.104510
  74. Waddell N.J., Liu Y., Chitaman J.M. et al. Transcription and DNA methylation signatures of paternal behavior in hippocampal dentate gyrus of prairie vo- les // Sci. Reports. 2023. V. 13. № 13. P. 11020. https://doi.org/10.1038/s41598-023-37521-2
  75. Kalbitzer U., Roos C., Kopp G.H. et al. Insights into the genetic foundation of aggression in Papio and the evolution of two length-polymorphisms in the promoter regions of serotonin-related genes (5-HTTLPR and MAOALPR) in Papionini // BMC Evol. Biol. 2016. V. 16. № 1. P. 1–15. https://doi.org/10.1186/s12862-016-0693-1
  76. Chen G.-L., Novak M.A., Meyer J.S. et al. The effect of rearing experience and TPH2 genotype on HPA axis function and aggression in rhesus monkeys: A retrospective analysis // Hormones and Behavior. 2010. V. 57. № 2. P. 184–191. https://doi.org/10.1016/j.yhbeh.2009.10.012
  77. De Leon D., Nishitani S., Walum H. et al. Methylation of OXT and OXTR genes, central oxytocin, and social behavior in female macaques // Hormones and Behavior. 2020. V. 126. https://doi.org/10.1016/j.yhbeh.2020.104856
  78. Cimarelli G., Virányi Z., Turcsán B. et al. Social behavior of pet dogs is associated with peripheral OXTR methylation // Front. Psychol. 2017. V. 8. https://doi.org/10.3389/fpsyg.2017.00549
  79. Fernàndez-Castillo N., Gan G., van Donkelaar M.M.J. et al. RBFOX1, encoding a splicing regulator, is a candidate gene for aggressive behavior // Europ. Neuropsychopharmacology. 2017. V. 30. P. 44–55. https://doi.org/10.1016/j.euroneuro.2017.11.012
  80. He Z.-X., Yue M.-H., Liu K.-J. et al. Substance P in the medial amygdala regulates aggressive behaviors in male mice // Neuropsychopharmacology. 2024. V. 49. № 11. P. 1689–1699. https://doi.org/10.1038/s41386-024-01863-w
  81. Gilani M., Abak N., Saberian M. Genetic-epigenetic-neuropeptide associations in mood and anxiety disorders: Toward personalized medicine // Pharmacol. Biochem. Behavior. 2024. V. 245. https://doi.org/10.1016/j.pbb.2024.173897
  82. Chen S.-D., Sun X.-Y., Niu W. et al. A preliminary analysis of microRNA-21 expression alteration after antipsychotic treatment in patients with schizophrenia // Psychiatry Res. 2016. V. 244. P. 324–332. https://doi.org/10.1016/j.psychres.2016.04.087
  83. Németh N., Kovács-Nagy R., Székely A. et al. Association of impulsivity and polymorphic microRNA-641 target sites in the SNAP-25 gene // PloS One. 2013. V. 8. № 12. https://doi.org/10.1371/journal.pone.0084207
  84. Hunter R.G., McEwen B.S. Stress and anxiety across the lifespan: Structural plasticity and epigenetic regulation // Epigenomics. 2013. V. 5. № 2. P. 177–194. https://doi.org/10.2217/epi.13.8
  85. Murray J.K., Kinsman R.H., Lord M.S. et al. ’Generation Pup’–Protocol for a longitudinal study of dog behaviour and health // BMC Veterinary Res. 2021. V. 17. № 1. P. 1. https://doi.org/10.1186/s12917-020-02730-8
  86. Belyaev D.K., Plyusnina I.Z., Trut L.N. Domestication in the silver fox (Vulpes fulvus desm): Changes in physiological boundaries of the sensitive period of primary socialization // Applied Animal Behav. Sci. 1985. V. 13. № 4. P. 359–370. https://doi.org/10.1016/0168-1591(85)90015-2
  87. Alexandrovich Y.V., Antonov E.V., Shikhevich S.G. et al. The expression profile of genes associated with behavior, stress, and adult neurogenesis along the hippocampal dorsoventral axis in tame and aggressive foxes // Vavil. Zh. Genet. Selekt. 2023. V. 27. № 6. P. 651–661. https://doi.org/10.18699/VJGB-23-76
  88. Rosenfeld C.S., Hekman J.P., Johnson J.L. et al. Hypothalamic transcriptome of tame and aggressive silver foxes (Vulpes vulpes) identifies gene expression differences shared across brain regions // Genes, Brain, and Behavior. 2020. V. 19. № 1. https://doi.org/10.1111/gbb.12614
  89. Babenko V.N., Bragin A.O., Chadaeva I.V. et al. Differential alternative splicing in brain regions of rats selected for aggressive behavior // Mol. Biol. 2017. V. 51. № 5. P. 759–768. https://doi.org/10.1134/S002689331705003X
  90. Трапезов О.В. Регуляторные эффекты генов поведения и управление окрасочным формообразованием у американских норок (Mustela vison Schreber, 1777) // Информ. вестник ВОГиС. 2008. Т. 12. № 1–2. С. 63–83. https://elibrary.ru/item.asp?id=12515806
  91. Манахов А.Д., Дудко Н.А., Гусев Ф.Е. и др. Генетическая вариабельность локуса гена МАОА у агрессивных животных неканонической поведенческой модели Neogale vison // Генетика. 2023. Т. 59. № 6. C. 728–732. https://doi.org/10.31857/S0016675823060097
  92. Дудко Н., Андреева Т., Манахов А. и др. Регуляторная геномика агрессивного поведения на неканонической модели лисы Vulpes vulpes // Четырнадцатая междунар. мультиконф. Тез. докл. Биоинформатика регуляции и структуры геномов / Cистемная биология. Новосибирск, 2024. https://doi.org/10.18699/bgrs2024-5.1-03
  93. Battivelli D., Fan Z., Hu H., Gross C.T. How can ethology inform the neuroscience of fear, aggression and dominance? // Nat. Rev. Neurosci. 2024. V. 25. № 12. P. 809–819. https://doi.org/10.1038/s41583-024-00858-2
  94. Van Dongen J., Hagenbeek F.A., Suderman M. et al. DNA methylation signatures of aggression and closely related constructs: A meta-analysis of epigenome-wide studies across the lifespan // Mol. Psychiatry. 2021. V. 26. № 6. P. 2148–2162. https://doi.org/10.1038/s41380-020-00987-x
  95. Zapata I., Serpell J.A., Alvarez C.E. Genetic mapping of canine fear and aggression // BMC Genomics. 2016. V. 17. № 1. Р. 572. https://doi.org/10.1186/s12864-016-2936-3 https://doi.org/

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».