Epigenetics of Aggression: Recent Advances and Perspectives on Animal Models
- Авторлар: Dudko N.A.1,2, Nurieva G.N.1, Kunizheva S.S.1,2, Kuznetsova I.L.2
-
Мекемелер:
- Center for Genetics and Life Science, «Sirius» University of Science and Technology»
- Vavilov Institute of General Genetics of the Russian Academy of Sciences
- Шығарылым: Том 61, № 10 (2025)
- Беттер: 3-13
- Бөлім: ОБЗОРНЫЕ И ТЕОРЕТИЧЕСКИЕ СТАТЬИ
- URL: https://journals.rcsi.science/0016-6758/article/view/355167
- DOI: https://doi.org/10.7868/S3034510325100019
- ID: 355167
Дәйексөз келтіру
Аннотация
Негізгі сөздер
Авторлар туралы
N. Dudko
Center for Genetics and Life Science, «Sirius» University of Science and Technology»; Vavilov Institute of General Genetics of the Russian Academy of Sciences
Email: dudko@rogaevlab.ru
Krasnodar oblast, pgt. Sirius, 354340 Russia; Moscow, 119991 Russia
G. Nurieva
Center for Genetics and Life Science, «Sirius» University of Science and Technology»Krasnodar oblast, pgt. Sirius, 354340 Russia
S. Kunizheva
Center for Genetics and Life Science, «Sirius» University of Science and Technology»; Vavilov Institute of General Genetics of the Russian Academy of SciencesKrasnodar oblast, pgt. Sirius, 354340 Russia; Moscow, 119991 Russia
I. Kuznetsova
Vavilov Institute of General Genetics of the Russian Academy of SciencesMoscow, 119991 Russia
Әдебиет тізімі
- Thornton L.C., Frick P.J., Crapanzano A.M. et al. The incremental utility of callous-unemotional traits and conduct problems in predicting aggression and bul- lying in a community sample of boys and girls // Psychol. Assessment. 2013. V. 25. № 2. P. 366–378. https://doi.org/10.1037/a0031153
- Lindenfors P., Tullberg B.S. Evolutionary aspects of aggression the importance of sexual selection // Adv. Genet. 2011. V. 75. P. 7–22. https://doi.org/10.1016/B978-0-12-380858-5.00009-5
- Liljegren M., Naasan G., Temlett J. et al. Criminal beha- vior in frontotemporal dementia and Alzheimer disease // JAMA Neurology. 2015. V. 72. № 3. P. 295–300. https://doi.org/10.1001/jamaneurol.2014.3781
- Cupaioli F.A., Zucca F.A., Caporale C. et al. The neurobiology of human aggressive behavior: Neuroima- ging, genetic, and neurochemical aspects // Progress in Neuropsychopharm. and Biol. Psychiatry. 2021. V. 106. https://doi.org/10.1016/j.pnpbp.2020.110059
- González-Giraldo Y., Camargo A., López-León S. et al. A functional SNP in MIR124-1, a brain expressed miRNA gene, is associated with aggressiveness in a Colombian sample // Eur. Psychiatry. 2015. V. 30. № 4. P. 499–503. https://doi.org/10.1016/j.eurpsy.2015.03.002
- Provençal N., Booij L., Tremblay R.E. The developmental origins of chronic physical aggression: Biolo- gical pathways triggered by early life adversity // J. Experim. Biol. 2015. V. 218. № 1. P. 123–133. https://doi.org/10.1242/jeb.111401
- Shorter J., Couch C., Huang W. et al. Genetic architecture of natural variation in Drosophila melanogaster aggressive behavior // Proc. Natl Acad. Sci. USA. 2015. V. 112. № 27. P. E3555–Е3563. https://doi.org/10.1073/pnas.1510104112
- Groothuis T.G.G., Carere C. Avian personalities: Cha- racterization and epigenesis // Neurosci. Biobehavio- ral Rev. 2005. V. 29. № 1. P. 137–150. https://doi.org/10.1016/j.neubiorev.2004.06.010
- Redina O., Babenko V., Smagin D. et al. Gene expression changes in the ventral tegmental area of male mice with alternative social behavior experience in chronic agonistic interactions // Intern. J. Mol. Sci. 2020. V. 21. № 18. P. 6599. https://doi.org/10.3390/ijms21186599
- Gardner A., Úbeda F. The meaning of intrageno- mic conflict // Nat. Ecol. Evol. 2017. V. 1. № 12. P. 1807–1815. https://doi.org/10.1038/s41559-017-0354-9
- Bresnahan S.T., Lee E., Clark L. et al. Examining pa- rent-of-origin effects on transcription and RNA me- thylation in mediating aggressive behavior in honey bees (Apis mellifera) // BMC Genomics. 2023. V. 24 № 1. P. 315. https://doi.org/10.1186/s12864-023-09411-4
- Audira G., Sarasamma S., Chen J.-R. et al. Zebrafish mutants carrying leptin a (Lepa) gene deficiency display obesity, anxiety, less aggression and fear, and circadian rhythm and color preference dysregulation // Int. J. Mol. Sci. 2018. V. 19. № 12. https://doi.org/10.3390/ijms19124038
- Fairbanks L.A., Way B.M., Breidenthal S.E. et al. Maternal and offspring dopamine D4 receptor geno- types interact to influence juvenile impulsivity in vervet monkeys // Psychol. Sci. 2012. V. 23. № 10. P. 1099–1104. https://doi.org/10.1177/0956797612444905
- Saetre P., Strandberg E., Sundgren P.-E. et al. The genetic contribution to canine personality // Genes, Brain, and Behavior. 2006. V. 5. № 3. P. 240–248. https://doi.org/10.1111/j.1601-183X.2005.00155.x
- Tuvblad C., Baker L.A. Human aggression across the lifespan: Genetic propensities and environmental moderators // Adv. Genet. 2011. V. 75. P. 171–214. https://doi.org/10.1016/B978-0-12-380858-5.00007-1
- Porsch R.M., Middeldorp C.M., Cherny S.S. et al. Longitudinal heritability of childhood aggression // Am. J. Med. Genet. Part B: Neuropsychiatric Genet. 2016. V. 171. № 5. P. 697–707. https://doi.org/10.1002/ajmg.b.32420
- Ferguson C.J. Genetic contributions to antisocial personality and behavior: A meta-analytic review from an evolutionary perspective // J. Soc. Psychol. 2010. V. 150. № 2. P. 160–180. https://doi.org/10.1080/00224540903366503
- Hudziak J.J., van Beijsterveldt C.E.M., Bartels M. et al. Individual differences in aggression: Genetic analyses by age, gender, and informant in 3-, 7-, and 10-year-old Dutch twins // Behavior Genet. 2003. V. 33. № 5. P. 575–589. https://doi.org/10.1023/a:1025782918793
- Hirata Y., Zai C.C., Nowrouzi B. et al. Study of the catechol-o-methyltransferase (Comt) gene with high aggression in children // Aggress. Behavior. 2012. V. 39. № 1. P. 45–51. https://doi.org/10.1002/ab.21448
- Gerra G., Garofano L., Pellegrini C. et al. Allelic association of a dopamine transporter gene polymorphism with antisocial behaviour in heroin-dependent patients // Addiction Biol. 2005. V. 10. № 3. P. 275–281. https://doi.org/10.1080/13556210500223769
- Fresan A., Camarena B., Apiquian R. et al. Association study of MAO-A and DRD4 genes in schizophrenic patients with aggressive behavior // Neuropsychobio- logy. 2007. V. 55. № 3–4. P. 171–175. https://doi.org/10.1159/000106477
- Miczek K.A., de Almeida R.M.M., Kravitz E.A. et al. Neurobiology of escalated aggression and violence // J. Neurosci. 2007. V. 27. № 44. P. 11803–11806. https://doi.org/10.1523/JNEUROSCI.3500-07.2007
- Craig D., Hart D.J., Carson R. et al. Allelic variation at the A218C tryptophan hydroxylase polymorphism influences agitation and aggression in Alzheimer’s disease // Neurosci. Letters. 2004. V. 363. № 3. P. 199–202. https://doi.org/10.1016/j.neulet.2004.02.054
- Perez-Rodriguez M.M., Weinstein S., New A.S. et al. Tryptophan-hydroxylase 2 haplotype association with borderline personality disorder and aggression in a sample of patients with personality disorders and healthy controls // J. Psychiatric Res. 2010. V. 44. № 15. P. 1075–1081. https://doi.org/10.1016/j.jpsychires.2010.03.014
- Jensen K.P., Covault J., Conner T.S. et al. A common polymorphism in serotonin receptor 1B mRNA moderates regulation by miR-96 and associates with aggressive human behaviors // Mol. Psychiatry. 2009. V. 14. № 4. P. 381–389. https://doi.org/10.1038/mp.2008.15
- Banlaki Z., Elek Z., Nanasi T. et al. Polymorphism in the serotonin receptor 2a (Htr2a) gene as possible predisposal factor for aggressive traits // PloS One. 2015. V. 10. № 2. https://doi.org/10.1371/journal.pone.0117792
- Reif A., Rösler M., Freitag C.M. et al. Nature and nurture predispose to violent behavior: Serotonergic genes and adverse childhood environment // Neuropsychopharmacology. 2007. V. 32. № 11. P. 2375–2383. https://doi.org/10.1038/sj.npp.1301359
- Kiive E., Laas K., Vaht M. et al. Stressful life events increase aggression and alcohol use in young carriers of the GABRA2 rs279826/rs279858 A-allele // Europ. Neuropsychopharm. 2017. V. 27. № 8. P. 816–827. https://doi.org/10.1016/j.euroneuro.2017.02.003
- Malik A.I., Zai C.C., Abu Z. et al. The role of oxytocin and oxytocin receptor gene variants in childhood-onset aggression // Genes, Brain, and Behavior. 2012. V. 11. № 5. P. 545–551. https://doi.org/10.1111/j.1601-183X.2012.00776.x
- Pappa I., St Pourcain B., Benke K. et al. A genome-wide approach to children’s aggressive behavior: The EAGLE consortium // Am. J. Med. Genet. Part B: Neuropsychiatric Genet. 2016. V. 171. № 5. P. 562–572. https://doi.org/10.1002/ajmg.b.32333
- Luppino D., Moul C., Hawes D.J. et al. Association between a polymorphism of the vasopressin 1B receptor gene and aggression in children // Psychiatric Genet. 2014. V. 24. № 5. P. 185–190. https://doi.org/10.1097/YPG.0000000000000036
- Kretschmer T., Vitaro F., Barker E.D. The association between peer and own aggression is moderated by the bdnf val-met polymorphism // J. Res. Adolescence. 2014. V. 24. № 1. P. 177–185. https://doi.org/10.1111/jora.12050
- Vaillancourt K.L., Dinsdale N.L., Hurd P.L. Estrogen receptor 1 promoter polymorphism and digit ratio in men // Am. J. Human Biol. 2012. V. 24. № 5. P. 682–689. https://doi.org/10.1002/ajhb.22297
- Rajender S., Pandu G., Sharma J.D. et al. Reduced CAG repeats length in androgen receptor gene is associated with violent criminal behavior // Int. J. Legal Med. 2008. V. 122. № 5. P. 367–372. https://doi.org/10.1007/s00414-008-0225-7
- Reif A., Jacob C.P., Rujescu D. et al. Influence of functional variant of neuronal nitric oxide synthase on impulsive behaviors in humans // Arch. General Psychiatry. 2009. V. 66. № 1. P. 41–50. https://doi.org/10.1001/archgenpsychiatry.2008.510
- Rujescu D., Giegling I., Mandelli L. et al. NOS-I and -III gene variants are differentially associated with facets of suicidal behavior and aggression-related traits // Am. J. Med. Genet. Part B: Neuropsychiatric Genet. 2008. V. 147B. № 1. P. 42–48. https://doi.org/10.1002/ajmg.b.30569
- Zhang-James Y., Fernàndez-Castillo N., Hess J.L. et al. An integrated analysis of genes and functional pathways for aggression in human and rodent models // Mol. Psychiatry. 2019. V. 24. № 11. P. 1655–1667. https://doi.org/10.1038/s41380-018-0068-7
- Kukekova A.V., Johnson J.L., Xiang X. et al. Red fox genome assembly identifies genomic regions associa ted with tame and aggressive behaviours // Nat. Ecol. Evol. 2018. V. 2. № 9. P. 1479–1491. https://doi.org/10.1038/s41559-018-0611-6
- Wang X., Pipes L., Trut L.N. et al. Genomic responses to selection for tame/aggressive behaviors in the silver fox (Vulpes vulpes) // Proc. Natl Acad. Sci. USA. 2018. V. 115. № 41. P. 10398–10403. https://doi.org/10.1073/pnas.1800889115
- Mehrmohamadi M., Sepehri M.H., Nazer N., Noro- uzi M.R. A comparative overview of epigenomic profiling methods // Front. Cell and Developm. Biol. 2021. V. 9. https://doi.org/10.3389/fcell.2021.714687
- Slotkin R.K., Martienssen R. Transposable elements and the epigenetic regulation of the genome // Nat. Rev. Genet. 2007. V. 8. № 4. P. 272–285. https://doi.org/10.1038/nrg2072
- Wu Y.-L., Lin Z.-J., Li C.-C. et al. Epigenetic regulation in metabolic diseases: Mechanisms and advances in clinical study // Signal Transduction and Targeted Therapy. 2023. V. 8. № 1. P. 1–27. https://doi.org/10.1038/s41392-023-01333-7
- Мустафин Р.Н., Казанцева А.В., Еникеева Р.Ф. и др. Эпигенетика агрессивного поведения // Генетика. 2019. Т. 55. № 9. С. 987–997. https://doi.org/10.1134/S0016675819090091
- Hoyer S.C., Eckart A., Herrel A. et al. Octopamine in male aggression of Drosophila // Current Biol. 2008. V. 18. № 3. P. 159–167. https://doi.org/10.1016/j.cub.2007.12.052
- Dierick H.A., Greenspan R.J. Serotonin and neuropeptide F have opposite modulatory effects on fly aggression // Nat. Genet. 2007. V. 39. № 5. P. 678–682. https://doi.org/10.1038/ng2029
- Mundiyanapurath S., Chan Y.-B., Leung A.K.W., Kra- vitz E.A. Feminizing cholinergic neurons in a male Drosophila nervous system enhances aggression // Fly. 2009. V. 3. № 3. P. 179–184. https://doi.org/10.4161/fly.3.3.8989
- Alekseyenko O.V., Chan Y.-B., Li R., Kravitz E.A. Single dopaminergic neurons that modulate aggression in Drosophila // Proc. Natl Acad. Sci. USA. 2013. V. 110. № 15. P. 6151–6156. https://doi.org/10.1073/pnas.1303446110
- Gupta T., Morgan H.R., Andrews J.C. et al. Me- thyl-CpG binding domain proteins inhibit interspecies courtship and promote aggression in Drosophila // Sci. Reports. 2017. V. 7. № 1. P. 1–12. https://doi.org/10.1038/s41598-017-05844-6
- Quah Y.C.R., Li D. Epigenetic modification of fruitless in the protocerebrum influences male drosophila courtship behaviour // Springer Nat. 2022. P. 569–582. https://doi.org/10.1007/978-981-16-9869-9_45
- Zhang N. Role of methionine on epigenetic modification of DNA methylation and gene expression in animals // Animal Nutrition. 2018. V. 4. № 1. P. 11–16. https://doi.org/10.1016/j.aninu.2017.08.009
- Zanandrea R., Wiprich M.T., Altenhofen S. et al. Paternal exposure to excessive methionine altered behavior and neurochemical activities in zebrafish offspring // Amino Acids. 2021. V. 53. № 7. P. 1153–1167. https://doi.org/10.1007/s00726-021-03019-2
- Smith K., Leiras C. The effectiveness and safety of Kava Kava for treating anxiety symptoms: A systematic review and analysis of randomized clinical trials // Compl. Therapies in Clin. Practice. 2018. V. 33. P. 107–117. https://doi.org/10.1016/j.ctcp.2018.09.003
- Wang D., Yang L., Wang J. et al. Behavioral and phy- siological effects of acute and chronic kava exposure in adult zebrafish // Neurotoxicol. Teratol. 2020. V. 79. https://doi.org/10.1016/j.ntt.2020.106881
- Hata K., Okano M., Lei H., Li E. Dnmt3L cooperates with the Dnmt3 family of de novo DNA methyltransferases to establish maternal imprints in mice // Development (Cambridge, England). 2002. V. 129. № 8. P. 1983–1993. https://doi.org/10.1242/dev.129.8.1983
- Lai Y.-H., Audira G., Liang S.-T. et al. Duplicated dnmt3aa and dnmt3ab dna methyltransferase genes play essential and non-overlapped functions on modulating behavioral control in zebra- fish // Genes. 2020. V. 11. № 11. P. 1322. https://doi.org/10.3390/genes11111322
- Anka I.Z., Uren Webster T.M., Berbel-Filho W.M. et al. Microbiome and epigenetic variation in wild fish with low genetic diversity // Nat. Communicat. 2024. V. 15. P. 4725. https://doi.org/10.1038/s41467-024-49162-8
- Sun D., Layman T.S., Jeong H. et al. Genome-wide variation in DNA methylation linked to developmental stage and chromosomal suppression of recombination in white-throated sparrows // Mol. Ecol. 2021. V. 30. № 14. P. 3453–3467. https://doi.org/10.1111/mec.15793
- Prichard M.R., Grogan K.E., Merritt J.R. et al. Allele-specific cis-regulatory methylation of the gene for vasoactive intestinal peptide in white-throated sparrows // Genes, Brain, and Behavior. 2022. V. 21. № 8. https://doi.org/10.1111/gbb.12831
- Merritt J.R., Grogan K.E., Zinzow-Kramer W.M. et al. A supergene-linked estrogen receptor drives alternative phenotypes in a polymorphic songbird // Proc. Natl Acad. Sci. USA. 2020. V. 117. № 35. P. 21673–21680. https://doi.org/10.1073/pnas.2011347117
- Tuttle E.M. Alternative reproductive strategies in the white-throated sparrow: Behavioral and gene- tic evidence // Behavioral Ecol. 2003. V. 14. № 3. P. 425–432. https://doi.org/10.1093/beheco/14.3.425
- Bentz A.B., George E.M., Wolf S.E. et al. Experimental competition induces immediate and lasting effects on the neurogenome in free-living female birds // Proc. Natl Acad. Sci. USA. 2021. V. 118. № 13. https://doi.org/10.1073/pnas.2016154118
- Rodriguez B.A., Frankhouser D., Murphy M. et al. Methods for high-throughput MethylCap-Seq data analysis // BMC Genomics. 2012. V. 13. № 6. https://doi.org/10.1186/1471-2164-13-S6-S14
- Roth T.L., Lubin F.D., Funk A.J., Sweatt J.D. Lasting epigenetic influence of early-life adversity on the BDNF gene // Biol. Psychiatry. 2009. V. 65. № 9. P. 760–769. https://doi.org/10.1016/j.biopsych.2008.11.028
- Weaver I.C.G., Cervoni N., Champagne F.A. et al. Epigenetic programming by maternal behavior // Nat. Neurosci. 2004. V. 7. № 8. P. 847–854. https://doi.org/10.1038/nn1276
- Suderman M., McGowan P.O., Sasaki A. et al. Conserved epigenetic sensitivity to early life experience in the rat and human hippocampus // Proc. Natl Acad. Sci. USA. 2012. V. 109. Suppl. 2. P. 17266–17272. https://doi.org/10.1073/pnas.1121260109
- Franklin T.B., Russig H., Weiss I.C. et al. Epigenetic transmission of the impact of early stress across generations // Biol. Psychiatry. 2010. V. 68. № 5. P. 408–415. https://doi.org/10.1016/j.biopsych.2010.05.036
- Hernandez Carballo L.G., Li P., Senek R., Yan Z. Systemic histone deacetylase inhibition ameliorates the aberrant responses to acute stress in socially isolated male mice // J. Physiol. 2024. V. 602. № 9. P. 2047–2060. https://doi.org/10.1113/JP285875
- Matrisciano F., Pinna G. Ppar-α hypermethylation in the hippocampus of mice exposed to social isolation stress is associated with enhanced neuroinflammation and aggressive behavior // Int. J. Mol. Sci. V. 22. № 19. P. 10678. https://doi.org/10.3390/ijms221910678
- Zhang F., Rein B., Zhong P. et al. Synergistic inhibition of histone modifiers produces therapeutic effects in adult Shank3-deficient mice // Translat. Psychiatry. 2021. V. 1. № 1. P. 99. https://doi.org/10.1038/s41398-021-01233-w
- Wei J., Cheng J., Waddell N.J. et al. Dna methyltransferase 3a is involved in the sustained effects of chronic stress on synaptic functions and behaviors // Cerebral Cortex. 2021. V. 31. № 4. P. 1998–2012. https://doi.org/10.1093/cercor/bhaa337
- Chester D.S., DeWall C.N., Derefinko K.J. et al. Monoamine oxidase A (Maoa) genotype predicts greater aggression through impulsive reactivity to negative affect // Behav. Brain Res. 2015. V. 283. P. 97–101. https://doi.org/10.1016/j.bbr.2015.01.034
- Labonté B., Abdallah K., Maussion G. et al. Regulation of impulsive and aggressive behaviours by a novel lncRNA // Mol. Psychiatry. 2021. V. 26. № 8. P. 3751–3764. https://doi.org/10.1038/s41380-019-0637-4
- Konar A., Rastogi M., Bhambri A. Brain region specific methylation and Sirt1 binding changes in MAOA promoter is associated with sexual dimorphism in early life stress induced aggressive behavior // Neurochem. Intern. 2019. V. 129. https://doi.org/10.1016/j.neuint.2019.104510
- Waddell N.J., Liu Y., Chitaman J.M. et al. Transcription and DNA methylation signatures of paternal behavior in hippocampal dentate gyrus of prairie vo- les // Sci. Reports. 2023. V. 13. № 13. P. 11020. https://doi.org/10.1038/s41598-023-37521-2
- Kalbitzer U., Roos C., Kopp G.H. et al. Insights into the genetic foundation of aggression in Papio and the evolution of two length-polymorphisms in the promoter regions of serotonin-related genes (5-HTTLPR and MAOALPR) in Papionini // BMC Evol. Biol. 2016. V. 16. № 1. P. 1–15. https://doi.org/10.1186/s12862-016-0693-1
- Chen G.-L., Novak M.A., Meyer J.S. et al. The effect of rearing experience and TPH2 genotype on HPA axis function and aggression in rhesus monkeys: A retrospective analysis // Hormones and Behavior. 2010. V. 57. № 2. P. 184–191. https://doi.org/10.1016/j.yhbeh.2009.10.012
- De Leon D., Nishitani S., Walum H. et al. Methylation of OXT and OXTR genes, central oxytocin, and social behavior in female macaques // Hormones and Behavior. 2020. V. 126. https://doi.org/10.1016/j.yhbeh.2020.104856
- Cimarelli G., Virányi Z., Turcsán B. et al. Social behavior of pet dogs is associated with peripheral OXTR methylation // Front. Psychol. 2017. V. 8. https://doi.org/10.3389/fpsyg.2017.00549
- Fernàndez-Castillo N., Gan G., van Donkelaar M.M.J. et al. RBFOX1, encoding a splicing regulator, is a candidate gene for aggressive behavior // Europ. Neuropsychopharmacology. 2017. V. 30. P. 44–55. https://doi.org/10.1016/j.euroneuro.2017.11.012
- He Z.-X., Yue M.-H., Liu K.-J. et al. Substance P in the medial amygdala regulates aggressive behaviors in male mice // Neuropsychopharmacology. 2024. V. 49. № 11. P. 1689–1699. https://doi.org/10.1038/s41386-024-01863-w
- Gilani M., Abak N., Saberian M. Genetic-epigenetic-neuropeptide associations in mood and anxiety disorders: Toward personalized medicine // Pharmacol. Biochem. Behavior. 2024. V. 245. https://doi.org/10.1016/j.pbb.2024.173897
- Chen S.-D., Sun X.-Y., Niu W. et al. A preliminary analysis of microRNA-21 expression alteration after antipsychotic treatment in patients with schizophrenia // Psychiatry Res. 2016. V. 244. P. 324–332. https://doi.org/10.1016/j.psychres.2016.04.087
- Németh N., Kovács-Nagy R., Székely A. et al. Association of impulsivity and polymorphic microRNA-641 target sites in the SNAP-25 gene // PloS One. 2013. V. 8. № 12. https://doi.org/10.1371/journal.pone.0084207
- Hunter R.G., McEwen B.S. Stress and anxiety across the lifespan: Structural plasticity and epigenetic regulation // Epigenomics. 2013. V. 5. № 2. P. 177–194. https://doi.org/10.2217/epi.13.8
- Murray J.K., Kinsman R.H., Lord M.S. et al. ’Generation Pup’–Protocol for a longitudinal study of dog behaviour and health // BMC Veterinary Res. 2021. V. 17. № 1. P. 1. https://doi.org/10.1186/s12917-020-02730-8
- Belyaev D.K., Plyusnina I.Z., Trut L.N. Domestication in the silver fox (Vulpes fulvus desm): Changes in physiological boundaries of the sensitive period of primary socialization // Applied Animal Behav. Sci. 1985. V. 13. № 4. P. 359–370. https://doi.org/10.1016/0168-1591(85)90015-2
- Alexandrovich Y.V., Antonov E.V., Shikhevich S.G. et al. The expression profile of genes associated with behavior, stress, and adult neurogenesis along the hippocampal dorsoventral axis in tame and aggressive foxes // Vavil. Zh. Genet. Selekt. 2023. V. 27. № 6. P. 651–661. https://doi.org/10.18699/VJGB-23-76
- Rosenfeld C.S., Hekman J.P., Johnson J.L. et al. Hypothalamic transcriptome of tame and aggressive silver foxes (Vulpes vulpes) identifies gene expression differences shared across brain regions // Genes, Brain, and Behavior. 2020. V. 19. № 1. https://doi.org/10.1111/gbb.12614
- Babenko V.N., Bragin A.O., Chadaeva I.V. et al. Differential alternative splicing in brain regions of rats selected for aggressive behavior // Mol. Biol. 2017. V. 51. № 5. P. 759–768. https://doi.org/10.1134/S002689331705003X
- Трапезов О.В. Регуляторные эффекты генов поведения и управление окрасочным формообразованием у американских норок (Mustela vison Schreber, 1777) // Информ. вестник ВОГиС. 2008. Т. 12. № 1–2. С. 63–83. https://elibrary.ru/item.asp?id=12515806
- Манахов А.Д., Дудко Н.А., Гусев Ф.Е. и др. Генетическая вариабельность локуса гена МАОА у агрессивных животных неканонической поведенческой модели Neogale vison // Генетика. 2023. Т. 59. № 6. C. 728–732. https://doi.org/10.31857/S0016675823060097
- Дудко Н., Андреева Т., Манахов А. и др. Регуляторная геномика агрессивного поведения на неканонической модели лисы Vulpes vulpes // Четырнадцатая междунар. мультиконф. Тез. докл. Биоинформатика регуляции и структуры геномов / Cистемная биология. Новосибирск, 2024. https://doi.org/10.18699/bgrs2024-5.1-03
- Battivelli D., Fan Z., Hu H., Gross C.T. How can ethology inform the neuroscience of fear, aggression and dominance? // Nat. Rev. Neurosci. 2024. V. 25. № 12. P. 809–819. https://doi.org/10.1038/s41583-024-00858-2
- Van Dongen J., Hagenbeek F.A., Suderman M. et al. DNA methylation signatures of aggression and closely related constructs: A meta-analysis of epigenome-wide studies across the lifespan // Mol. Psychiatry. 2021. V. 26. № 6. P. 2148–2162. https://doi.org/10.1038/s41380-020-00987-x
- Zapata I., Serpell J.A., Alvarez C.E. Genetic mapping of canine fear and aggression // BMC Genomics. 2016. V. 17. № 1. Р. 572. https://doi.org/10.1186/s12864-016-2936-3 https://doi.org/
Қосымша файлдар

