Bacterial Immune Systems: to See the Virus and Die
- 作者: Gelfenbein D.M.1, Kanevskaya A.A.1, Godneeva B.K.1, Kropocheva E.V.1, Lisitskaya L.A.1, Panteleev V.A.1, Kulbachinskiy A.V.1
-
隶属关系:
- Institute of Gene Biology, Russian Academy of Sciences
- 期: 卷 61, 编号 11 (2025)
- 页面: 217–231
- 栏目: МИКРОБИОЛОГИЯ
- URL: https://journals.rcsi.science/0016-6758/article/view/361200
- DOI: https://doi.org/10.7868/S3034510325110229
- ID: 361200
如何引用文章
详细
作者简介
D. Gelfenbein
Institute of Gene Biology, Russian Academy of SciencesMoscow, Russia
A. Kanevskaya
Institute of Gene Biology, Russian Academy of SciencesMoscow, Russia
B. Godneeva
Institute of Gene Biology, Russian Academy of SciencesMoscow, Russia
E. Kropocheva
Institute of Gene Biology, Russian Academy of SciencesMoscow, Russia
L. Lisitskaya
Institute of Gene Biology, Russian Academy of SciencesMoscow, Russia
V. Panteleev
Institute of Gene Biology, Russian Academy of SciencesMoscow, Russia
A. Kulbachinskiy
Institute of Gene Biology, Russian Academy of Sciences
Email: avkulb@yandex.ru
Moscow, Russia
参考
- Nasir A., Romero-Severson E., Claverie J.M. Investigating the concept and origin of viruses // Trends Microbiol. 2020. V. 28. № 12. P. 959–967. https://doi.org/10.1016/j.tim.2020.08.003
- Georjon H., Bernheim A. The highly diverse antiphage defence systems of bacteria // Nat. Rev. Microbiol. 2023. V. 21. № 10. P. 686–700. https://doi.org/10.1038/s41579-023-00934-x
- Martinez M., Rizzuto I., Molina R. Knowing our enemy in the antimicrobial resistance era: Dissecting the molecular basis of bacterial defense systems // Int. J. Mol. Sci. 2024. V. 25. № 9. https://doi.org/10.3390/ijms25094929
- Isaev A.B., Musharova O.S., Severinov K.V. Microbial arsenal of antiviral defenses. Part II // Biochemistry (Moscow). 2021. V. 86. № 4. P. 449–470. https://doi.org/10.1134/S0006297921040064
- Isaev A.B., Musharova O.S., Severinov K.V. Microbial arsenal of antiviral defenses – part I//Biochemistry (Moscow). 2021. V. 86. № 3. P. 319–337. https://doi.org/10.1134/S0006297921030081
- Agapov A., Baker K.S., Bedekar P. et al. Multi-layered genome defences in bacteria // Curr. Opin Microbiol. 2024. V. 78. https://doi.org/10.1016/j.mib.2024.102436
- Bernheim A., Sorek R. The pan-immune system of bacteria: Antiviral defence as a community resource // Nat. Rev. Microbiol. 2020. V. 18. № 2. P. 113–119. https://doi.org/10.1038/s41579-019-0278-2
- Beavogui A., Lacroix A., Wiart N. et al. The defensome of complex bacterial communities // Nat. Commun. 2024. V. 15. № 1. P. 2146. https://doi.org/10.1038/s41467-024-46489-0
- Morehouse B.R. Phage defense origin of animal immunity // Curr. Opin Microbiol. 2023. V. 73. https://doi.org/10.1016/j.mib.2023.102295
- Bernheim A., Cury J., Poirier E.Z. The immune modules conserved across the tree of life: Towards a definition of ancestral immunity // PLoS Biol. 2024. V. 22. № 7. https://doi.org/10.1371/journal.pbio.3002717
- Van den Berg D.F., Costa A.R., Esser J.Q. et al. Bacterial homologs of innate eukaryotic antiviral defenses with anti-phage activity highlight shared evolutionary roots of viral defenses // Cell Host Microbe. 2024. V. 32. № 8. P. 1427–1443. https://doi.org/10.1016/j.chom.2024.07.007
- Gao L., Altae-Tran H., Bohning F. et al. Diverse enzymatic activities mediate antiviral immunity in prokaryotes // Science. 2020. V. 369. № 6507. P. 1077–1084. https://doi.org/10.1126/science.aba0372
- Millman A., Melamed S., Leavitt A. et al. An expanded arsenal of immune systems that protect bacteria from phages // Cell Host Microbe. 2022. V. 30. № 11. P. 1556–1569 e5. https://doi.org/10.1016/j.chom.2022.09.017
- Doron S., Melamed S., Ofir G. et al. Systematic discovery of antiphage defense systems in the microbial pangenome // Science. 2018. V. 359. № 6379. https://doi.org/10.1126/science.aar4120
- Baca C.F., Marraffini L.A. Nucleic acid recognition during prokaryotic immunity // Mol. Cell. 2025. V. 85. № 2. P. 309–322. https://doi.org/10.1016/j.molcel.2024.12.007
- Vassallo C.N., Doering C.R., Littlehale M.L. et al. A functional selection reveals previously undetected antiphage defence systems in the E. coli pangenome // Nat. Microbiol. 2022. V. 7. № 10. P. 1568–1579. https://doi.org/10.1038/s41564-022-01219-4
- Mayo-Munoz D., Pinilla-Redondo R., Birkholz N. et al. A host of armor: Prokaryotic immune strategies against mobile genetic elements // Cell Rep. 2023. V. 42. № 7. https://doi.org/10.1016/j.celrep.2023.112672
- Ledvina H.E., Whiteley A.T. Conservation and similarity of bacterial and eukaryotic innate immunity // Nat. Rev. Microbiol. 2024. V. 22. № 7. P. 420–434. https://doi.org/10.1038/s41579-024-01017-1
- Faure G., Saito M., Wilkinson M.E. et al. TIGR-Tas: A family of modular RNA-guided DNA-targeting systems in prokaryotes and their viruses // Science. 2025. https://doi.org/10.1126/science.adv9789
- Altae-Tran H., Kannan S., Suberski A.J. et al. Uncovering the functional diversity of rare CRISPRCas systems with deep terascale clustering // Science. 2023. V. 382. № 6673. https://doi.org/10.1126/science.adi1910
- Boyle T.A., Hatoum-Aslan A. Recurring and emerging themes in prokaryotic innate immunity // Curr. Opin Microbiol. 2023. V. 73. https://doi.org/10.1016/j.mib.2023.102324
- Rostol J.T., Marraffini L. (Ph)ighting phages: How bacteria resist their parasites // Cell Host Microbe. 2019. V. 25. № 2. P. 184–194. https://doi.org/10.1016/j.chom.2019.01.009
- Stokar-Avihail A., Fedorenko T., Hor J. et al. Discovery of phage determinants that confer sensitivity to bacterial immune systems // Cell. 2023. V. 186. № 9. P. 1863–1876 e16. https://doi.org/10.1016/j.cell.2023.02.029
- Kibby E.M., Conte A.N., Burroughs A.M. et al. Bacterial NLR-related proteins protect against phage // Cell. 2023. V. 186. № 11. P. 2410–2424 e18. https://doi.org/10.1016/j.cell.2023.04.015
- Gao L.A., Wilkinson M.E., Strecker J. et al. Prokaryotic innate immunity through pattern recognition of conserved viral proteins // Science. 2022. V. 377. № 6607. https://doi.org/10.1126/science.abm4096
- Burroughs A.M., Zhang D., Schaffer D.E. et al. Comparative genomic analyses reveal a vast, novel network of nucleotide-centric systems in biological conflicts, immunity and signaling // Nucl. Ac. Res. 2015. V. 43. № 22. P. 10633–10654. https://doi.org/10.1093/nar/gkv1267
- Ye Q., Lau R.K., Mathews I.T. et al. HORMA domain proteins and a trip13-like ATPase regulate bacterial cGAS-like enzymes to mediate bacteriophage immunity // Mol. Cell. 2020. V. 77. № 4. P. 709–722 e7. https://doi.org/10.1016/j.molcel.2019.12.009
- Pradhan B., Deep A., Konig J. et al. Loop-extrusionmediated plasmid DNA cleavage by the bacterial SMC Wadjet complex // Mol. Cell. 2025. V. 85. № 1. P. 107–116 e5. https://doi.org/10.1016/j.molcel.2024.11.002
- Roisné-Hamelin F., Liu H.W., Gruber S. Structure of a type II SMC Wadjet complex from Neobacillus vireti // bioRxiv. 2025. https://doi.org/10.1101/2025.03.10.642339.
- Gu Y., Li H., Deep A. et al. Bacterial Shedu immune nucleases share a common enzymatic core regulated by diverse sensor domains // Mol. Cell. 2025. V. 85. № 3. P. 523–536 e6. https://doi.org/10.1016/j.molcel.2024.12.004
- Loeff L., Walter A., Rosalen G.T. et al. DNA end sensing and cleavage by the Shedu anti-phage defense system // Cell. 2025. V. 188. № 3. P. 721–733 e17. https://doi.org/10.1016/j.cell.2024.11.030
- Hu H., Popp P.F., Hughes T.C.D. et al. Structure and mechanism of the Zorya anti-phage defence system // Nature. 2025. V. 639. № 8056. P. 1093–1101. https://doi.org/10.1038/s41586-024-08493-8
- Athukoralage J.S., White M.F. Cyclic nucleotide signaling in phage defense and counter-defense // Annu. Rev. Virol. 2022. V. 9. № 1. P. 451–468. https://doi.org/10.1146/annurev-virology-100120-010228
- Hobbs S.J., Kranzusch P.J. Nucleotide immune signaling in CBASS, Pycsar, Thoeris, and CRISPR antiphage defense // Annu. Rev. Microbiol. 2024. V. 78. № 1. P. 255–276. https://doi.org/10.1146/annurev-micro-041222-024843
- Rousset F., Sorek R. The evolutionary success of regulated cell death in bacterial immunity // Curr. Opin Microbiol. 2023. V. 74. https://doi.org/10.1016/j.mib.2023.102312
- Lopatina A., Tal N., Sorek R. Abortive Infection: Bacterial suicide as an antiviral immune strategy // Annu. Rev. Virol. 2020. V. 7. № 1. P. 371–384. https://doi.org/10.1146/annurev-virology-011620-040628
- Wang L., Zhang L. The arms race between bacteria CBASS and bacteriophages // Front. Immunol. 2023. V. 14. https://doi.org/10.3389/fimmu.2023.1224341
- Millman A., Bernheim A., Stokar-Avihail A. et al. Bacterial retrons function in anti-phage defense // Cell. 2020. V. 183. № 6. P. 1551–1561. e12. https://doi.org/10.1016/j.cell.2020.09.065
- Fineran P.C., Blower T.R., Foulds I.J. et al. The phage abortive infection system, ToxIN, functions as a protein-RNA toxin-antitoxin pair // Proc. Natl Acad. Sci. USA. 2009. V. 106. № 3. P. 894–899. https://doi.org/10.1073/pnas.0808832106
- LeRoux M., Laub M.T. Toxin-antitoxin systems as phage defense elements // Annu. Rev. Microbiol. 2022. V. 76. P. 21–43. https://doi.org/10.1146/annurev-micro-020722-013730
- Carabias A., Camara-Wilpert S., Mestre M.R. et al. Retron-Eco1 assembles NAD(+)-hydrolyzing filaments that provide immunity against bacteriophages // Mol. Cell. 2024. V. 84. № 11. P. 2185–2202. https://doi.org/10.1016/j.molcel.2024.05.001
- Hogrel G., Guild A., Graham S. et al. Cyclic nucleotideinduced helical structure activates a TIR immune effector // Nature. 2022. V. 608. № 7924. P. 808–812. https://doi.org/10.1038/s41586-022-05070-9
- Tamulaitiene G., Sabonis D., Sasnauskas G. et al. Activation of Thoeris antiviral system via SIR2 effector filament assembly // Nature. 2024. V. 627. № 8003. P. 431–436. https://doi.org/10.1038/s41586-024-07092-x
- Essuman K., Milbrandt J., Dangl J.L. et al. Shared TIR enzymatic functions regulate cell death and immunity across the tree of life // Science. 2022. V. 377. № 6605. https://doi.org/10.1126/science.abo0001
- Wang S., Kuang S., Song H. et al. The role of TIR domain-containing proteins in bacterial defense against phages // Nat. Commun. 2024. V. 15. № 1. P. 7384. https://doi.org/10.1038/s41467-024-51738-3
- Marmorstein R. Structure and chemistry of the Sir2 family of NAD+-dependent histone/protein deactylases // Biochem. Soc. Trans. 2004. V. 32. Pt 6. https://doi.org/10.1042/BST0320904
- Ofir G., Herbst E., Baroz M. et al. Antiviral activity of bacterial TIR domains via immune signalling molecules // Nature. 2021. V. 600. № 7887. P. 116–120. https://doi.org/10.1038/s41586-021-04098-7
- Shen Z., Lin Q., Yang X.Y. et al. Assembly-mediated activation of the SIR2-HerA supramolecular complex for anti-phage defense // Mol. Cell. 2023. V. 83. № 24. P. 4586–4599 e5. https://doi.org/10.1016/j.molcel.2023.11.007
- Tang D., Chen Y., Chen H. et al. Multiple enzymatic activities of a Sir2-HerA system cooperate for antiphage defense // Mol. Cell. 2023. V. 83. № 24. P. 4600–4613 e6. https://doi.org/10.1016/j.molcel.2023.11.010
- Garb J., Lopatina A., Bernheim A. et al. Multiple phage resistance systems inhibit infection via SIR2-dependent NAD(+) depletion // Nat. Microbiol. 2022. V. 7. № 11. P. 1849–1856. https://doi.org/10.1038/s41564-022-01207-8
- Li Y., Shen Z., Zhang M. et al. PtuA and PtuB assemble into an inf lammasome-like oligomer for anti-phage defense // Nat. Struct. Mol. Biol. 2024. V. 31. № 3. P. 413–423. https://doi.org/10.1038/s41594-023-01172-8
- Antine S.P., Johnson A.G., Mooney S.E. et al. Structural basis of Gabija anti-phage defence and viral immune evasion // Nature. 2024. V. 625. № 7994. P. 360–365. https://doi.org/10.1038/s41586-023-06855-2
- Li J., Cheng R., Wang Z. et al. Structures and activation mechanism of the Gabija anti-phage system // Nature. 2024. V. 629. № 8011. P. 467–473. https://doi.org/10.1038/s41586-024-07270-x
- Tuck O.T., Adler B.A., Armbruster E.G. et al. Genome integrity sensing by the broad-spectrum Hachiman antiphage defense complex // Cell. 2024. V. 187. № 24. P. 6914–6928. https://doi.org/10.1016/j.cell.2024.09.020
- Robins W.P., Meader B.T., Toska J. et al. DdmABCdependent death triggered by viral palindromic DNA sequences // Cell Rep. 2024. V. 43. № 7. https://doi.org/10.1016/j.celrep.2024.114450
- Patel D.J., Yu Y., Jia N. Bacterial origins of cyclic nucleotide-activated antiviral immune signaling // Mol. Cell. 2022. V. 82. № 24. P. 4591–4610. https://doi.org/10.1016/j.molcel.2022.11.006
- Burman N., Belukhina S., Depardieu F. et al. A virally encoded tRNA neutralizes the PARIS antiviral defence system // Nature. 2024. V. 634. № 8033. P. 424–431. https://doi.org/10.1038/s41586-024-07874-3
- Stella G., Marraffini L. Type III CRISPR-Cas: beyond the Cas10 effector complex // Trends Biochem. Sci. 2024. V. 49. № 1. P. 28–37. https://doi.org/10.1016/j.tibs.2023.10.006
- Duncan-Lowey B., Tal N., Johnson A.G. et al. CryoEM structure of the RADAR supramolecular antiphage defense complex // Cell. 2023. V. 186. № 5. P. 987–998 e15. https://doi.org/10.1016/j.cell.2023.01.012
- Gao Y., Luo X., Li P. et al. Molecular basis of RADAR anti-phage supramolecular assemblies // Cell. 2023. V. 186. № 5. P. 999–1012 e20. https://doi.org/10.1016/j.cell.2023.01.026
- Rousset F., Yirmiya E., Nesher S. et al. A conserved family of immune effectors cleaves cellular ATP upon viral infection // Cell. 2023. V. 186. № 17. P. 3619–3631 e13. https://doi.org/10.1016/j.cell.2023.07.020
- Hsueh B.Y., Severin G.B., Elg C.A. et al. Phage defence by deaminase-mediated depletion of deoxynucleotides in bacteria // Nat. Microbiol. 2022. V. 7. № 8. P. 1210–1220. https://doi.org/10.1038/s41564-022-01162-4
- Tal N., Millman A., Stokar-Avihail A. et al. Bacteria deplete deoxynucleotides to defend against bacteriophage infection // Nat. Microbiol. 2022. V. 7. № 8. P. 1200–1209. https://doi.org/10.1038/s41564-022-01158-0
- Duncan-Lowey B., Kranzusch P.J. CBASS phage defense and evolution of antiviral nucleotide signaling // Curr. Opin. Immunol. 2022. V. 74. P. 156–163. https://doi.org/10.1016/j.coi.2022.01.002
- Shi Y., Masic V., Mosaiab T. et al. Structural characterization of macro domain-containing Thoeris antiphage defense systems // Sci. Adv. 2024. V. 10. № 26. https://doi.org/10.1126/sciadv.adn3310
- Tal N., Morehouse B.R., Millman A. et al. Cyclic CMP and cyclic UMP mediate bacterial immunity against phages // Cell. 2021. V. 184. № 23. P. 5728–5739 e16. https://doi.org/10.1016/j.cell.2021.09.031
- Rousset F., Osterman I., Scherf T. et al. TIR signaling activates caspase-like immunity in bacteria // Science. 2025. V. 387. № 6733. P. 510–516. https://doi.org/10.1126/science.adu2262
- Johnson A.G., Mayer M.L., Schaefer S.L. et al. Structure and assembly of a bacterial gasdermin pore // Nature. 2024. V. 628. № 8008. P. 657–663. https://doi.org/10.1038/s41586-024-07216-3
- Johnson A.G., Wein T., Mayer M.L. et al. Bacterial gasdermins reveal an ancient mechanism of cell death // Science. 2022. V. 375. № 6577. P. 221–225. https://doi.org/10.1126/science.abj8432
- Steens J.A., Bravo J.P.K., Salazar C.R.P. et al. Type III-B CRISPR-Cas cascade of proteolytic cleavages // Science. 2024. V. 383. № 6682. P. 512–519. https://doi.org/10.1126/science.adk0378
- Ozcan A., Krajeski R., Ioannidi E. et al. Programmable RNA targeting with the single-protein CRISPR effector Cas7-11 // Nature. 2021. V. 597. № 7878. P. 720–725. https://doi.org/10.1038/s41586-021-03886-5
- Van Beljouw S.P.B., Haagsma A.C., Rodriguez-Molina A. et al. The gRAMP CRISPR-Cas effector is an RNA endonuclease complexed with a caspase-like peptidase // Science. 2021. V. 373. № 6561. P. 1349–1353. https://doi.org/10.1126/science.abk2718
- Hu C., van Beljouw S.P.B., Nam K.H. et al. Craspase is a CRISPR RNA-guided, RNA-activated protease // Science. 2022. V. 377. № 6612. P. 1278–1285. https://doi.org/10.1126/science.add5064
- Banh D.V., Roberts C.G., Morales-Amador A. et al. Bacterial cGAS senses a viral RNA to initiate immunity // Nature. 2023. V. 623. № 7989. P. 1001–1008. https://doi.org/10.1038/s41586-023-06743-9
- Lau R.K., Ye Q., Birkholz E.A. et al. Structure and mechanism of a cyclic trinucleotide-activated bacterial endonuclease mediating bacteriophage immunity // Mol. Cell. 2020. V. 77. № 4. P. 723–733. https://doi.org/10.1016/j.molcel.2019.12.010
- Severin G.B., Ramliden M.S., Hawver L.A. et al. Direct activation of a phospholipase by cyclic GMP-AMP in El Tor Vibrio cholerae // PNAS USA. 2018. V. 115. № 26. P. E6048–E6055. https://doi.org/10.1073/pnas.1801233115
- Lowey B., Whiteley A.T., Keszei A.F.A. et al. CBASS immunity uses CARF-related effectors to sense 3'- 5'- and 2'-5'-linked cyclic oligonucleotide signals and protect bacteria from phage infection // Cell. 2020. V. 182. № 1. P. 38–49. https://doi.org/10.1016/j.cell.2020.05.019
- Morehouse B.R., Govande A.A., Millman A. et al. STING cyclic dinucleotide sensing originated in bacteria // Nature. 2020. V. 586. № 7829. P. 429–433. https://doi.org/10.1038/s41586-020-2719-5
- Duncan-Lowey B., McNamara-Bordewick N.K., Tal N. et al. Effector-mediated membrane disruption controls cell death in CBASS antiphage defense // Mol. Cell. 2021. V. 81. № 24. P. 5039–5051 e5. https://doi.org/10.1016/j.molcel.2021.10.020
- Jenson J.M., Li T., Du F. et al. Ubiquitin-like conjugation by bacterial cGAS enhances anti-phage defence // Nature. 2023. V. 616. № 7956. P. 326–331. https://doi.org/10.1038/s41586-023-05862-7
- Yan Y., Xiao J., Huang F. et al. Phage defence system CBASS is regulated by a prokaryotic E2 enzyme that imitates the ubiquitin pathway // Nat. Microbiol. 2024. V. 9. № 6. P. 1566–1578. https://doi.org/10.1038/s41564-024-01684-z
- Kibby E.M., Robbins L.K., Deep A. et al. A bacterial NLR-related protein recognizes multiple unrelated phage triggers to sense infection // bioRxiv. 2024. https://doi.org/10.1101/2024.12.17.629029.
- Wang Y., Tian Y., Yang X. et al. Filamentation activates bacterial Avs5 antiviral protein // Nat. Commun. 2025. V. 16. № 1. P. 2408. https://doi.org/10.1038/s41467-025-57732-7
- Bobonis J., Mitosch K., Mateus A. et al. Bacterial retrons encode phage-defending tripartite toxinantitoxin systems // Nature. 2022. V. 609. № 7925. P. 144–150. https://doi.org/10.1038/s41586-022-05091-4
- Wang Y., Guan Z., Wang C. et al. Cryo-EM structures of Escherichia coli Ec86 retron complexes reveal architecture and defence mechanism // Nat. Microbiol. 2022. V. 7. № 9. P. 1480–1489. https://doi.org/10.1038/s41564-022-01197-7
- Wang Y., Wang C., Guan Z. et al. DNA methylation activates retron Ec86 filaments for antiphage defense // Cell Rep. 2024. V. 43. № 10. https://doi.org/10.1016/j.celrep.2024.114857
- Mestre M.R., Gonzalez-Delgado A., Gutierrez-Rus L.I. et al. Systematic prediction of genes functionally associated with bacterial retrons and classification of the encoded tripartite systems // Nucl. Ac. Res. 2020. V. 48. № 22. P. 12632–12647. https://doi.org/10.1093/nar/gkaa1149
- Bobadilla Ugarte P., Barendse P., Swarts D.C. Argonaute proteins confer immunity in all domains of life // Curr. Opin. Microbiol. 2023. V. 74. https://doi.org/10.1016/j.mib.2023.102313
- Burroughs A.M., Ando Y., Aravind L. New perspectives on the diversification of the RNA interference system: Insights from comparative genomics and small RNA sequencing // Wiley Interdiscip Rev. RNA. 2014. V. 5. № 2. P. 141–181. https://doi.org/10.1002/wrna.1210
- Swarts D.C., Makarova K., Wang Y. et al. The evolutionary journey of Argonaute proteins // Nat. Struct. Mol. Biol. 2014. V. 21. № 9. P. 743–753. https://doi.org/10.1038/nsmb.2879
- Olina A.V., Kulbachinskiy A.V., Aravin A.A. et al. Argonaute proteins and mechanisms of RNA interference in eukaryotes and prokaryotes // Biochemistry (Moscow). 2018. V. 83. № 5. P. 483–497. https://doi.org/10.1134/S0006297918050024
- Lisitskaya L., Aravin A.A., Kulbachinskiy A. DNA interference and beyond: Structure and functions of prokaryotic Argonaute proteins // Nat. Commun. 2018. V. 9. № 1. P. 5165. https://doi.org/10.1038/s41467-018-07449-7
- Makarova K.S., Wolf Y.I., van der Oost J. et al. Prokaryotic homologs of Argonaute proteins are predicted to function as key components of a novel system of defense against mobile genetic elements // Biol. Direct. 2009. V. 4. https://doi.org/10.1186/1745-6150-4-29
- Ryazansky S., Kulbachinskiy A., Aravin A.A. The expanded universe of prokaryotic argonaute proteins // MBio. 2018. V. 9. № 6. https://doi.org/10.1128/mBio.01935-18
- Agapov A., Panteleev V., Kropocheva E. et al. Prokaryotic Argonaute nuclease cooperates with co-encoded RNase to acquire guide RNAs and target invader DNA // Nucl. Ac. Res. 2024. V. 52. P. 5895–5911. https://doi.org/10.1093/nar/gkae345
- Hegge J.W., Swarts D.C., Chandradoss S.D. et al. DNA-guided DNA cleavage at moderate temperatures by Clostridium butyricum Argonaute // Nucl. Ac. Res. 2019. V. 47. № 11. P. 5809–5821. https://doi.org/10.1093/nar/gkz306
- Kaya E., Doxzen K.W., Knoll K.R. et al. A bacterial Argonaute with noncanonical guide RNA specificity // PNAS USA. 2016. V. 113. № 15. P. 4057–4062. https://doi.org/10.1073/pnas.1524385113
- Kuzmenko A., Yudin D., Ryazansky S. et al. Programmable DNA cleavage by Ago nucleases from mesophilic bacteria Clostridium butyricum and Limnothrix rosea // Nucl. Ac. Res. 2019. V. 47. № 11. P. 5822–5836. https://doi.org/10.1093/nar/gkz379
- Kropocheva E., Kuzmenko A., Aravin A.A. et al. A programmable pAgo nuclease with universal guide and target specificity from the mesophilic bacterium Kurthia massiliensis // Nucl. Ac. Res. 2021. V. 49. № 7. P. 4054–4065. https://doi.org/10.1093/nar/gkab182
- Liu Y., Li W., Jiang X. et al. A programmable omnipotent Argonaute nuclease from mesophilic bacteria Kurthia massiliensis // Nucl. Ac. Res. 2021. V. 49. № 3. P. 1597–1608. https://doi.org/10.1093/nar/gkaa1278
- Lisitskaya L., Shin Y., Agapov A. et al. Programmable RNA targeting by bacterial Argonaute nucleases with unconventional guide binding and cleavage specificity // Nat. Commun. 2022. V. 13. № 1. P. 4624. https://doi.org/10.1038/s41467-022-32079-5
- Li W., Liu Y., He R. et al. A programmable pAgo nuclease with RNA target preference from the psychrotolerant bacterium Mucilaginibacter paludis // Nucl. Ac. Res. 2022. V. 50. № 9. P. 5226–5238. https://doi.org/10.1093/nar/gkac315
- Swarts D.C., Hegge J.W., Hinojo I. et al. Argonaute of the archaeon Pyrococcus furiosus is a DNA-guided nuclease that targets cognate DNA // Nucl. Ac. Res. 2015. V. 43. № 10. P. 5120–5129. https://doi.org/10.1093/nar/gkv415
- Swarts D.C., Jore M.M., Westra E.R. et al. DNAguided DNA interference by a prokaryotic Argonaute // Nature. 2014. V. 507. № 7491. P. 258–261. https://doi.org/10.1038/nature12971
- Zander A., Willkomm S., Ofer S. et al. Guideindependent DNA cleavage by archaeal Argonaute from Methanocaldococcus jannaschii // Nat. Microbiol. 2017. V. 2. https://doi.org/10.1038/nmicrobiol.2017.34
- Kropocheva E., Lisitskaya L., Agapov A. et al. Prokaryotic Argonaute proteins as a tool for biotechnology // Mol. Biol. 2022. V. 56. № 6. P. 854–873. https://doi.org/10.1134/S0026893322060103
- Enghiad B., Xue P., Singh N. et al. PlasmidMaker is a versatile, automated, and high throughput endto-end platform for plasmid construction // Nat. Commun. 2022. V. 13. № 1. P. 2697. https://doi.org/10.1038/s41467-022-30355-y
- Qin Y., Li Y., Hu Y. Emerging Argonaute-based nucleic acid biosensors // Trends Biotechnol. 2022. V. 40. № 8. P. 910–914. https://doi.org/10.1016/j.tibtech.2022.03.006
- Kuzmenko A., Oguienko A., Esyunina D. et al. DNA targeting and interference by a bacterial Argonaute nuclease // Nature. 2020. V. 587. № 7835. P. 632–637. https://doi.org/10.1038/s41586-020-2605-1
- Esyunina D., Okhtienko A., Olina A. et al. Specific targeting of plasmids with Argonaute enables genome editing // Nucl. Ac. Res. 2023. V. 51. № 8. P. 4086–4099. https://doi.org/10.1093/nar/gkad191
- Jolly S.M., Gainetdinov I., Jouravleva K. et al. Thermus thermophilus Argonaute functions in the completion of DNA replication // Cell. 2020. V. 182. № 6. P. 1545–1559 e18. https://doi.org/10.1016/j.cell.2020.07.036
- Olina A., Agapov A., Yudin D. et al. Bacterial Argonaute proteins aid cell division in the presence of tpoisomerase inhibitors in Escherichia coli // Microbiol. Spectr. 2023. V. 11. № 3. https://doi.org/10.1128/spectrum.04146-22
- Lisitskaya L., Kropocheva E., Agapov A. et al. Bacterial Argonaute nucleases reveal different modes of DNA targeting in vitro and in vivo // Nucl. Ac. Res. 2023. V. 51. № 10. P. 5106–5124. https://doi.org/10.1093/nar/gkad290
- Olovnikov I., Chan K., Sachidanandam R. et al. Bacterial argonaute samples the transcriptome to identify foreign DNA // Mol. Cell. 2013. V. 51. № 5. P. 594–605. https://doi.org/10.1016/j.molcel.2013.08.014
- Liu Y., Esyunina D., Olovnikov I. et al. Accommodation of helical imperfections in Rhodobacter sphaeroides Argonaute ternary complexes with guide RNA and target DNA // Cell Reports. 2018. V. 24. № 2. P. 453–462.
- Miyoshi T., Ito K., Murakami R. et al. Structural basis for the recognition of guide RNA and target DNA heteroduplex by Argonaute // Nat. Commun. 2016. V. 7. https://doi.org/10.1038/ncomms11846
- Song X., Lei S., Liu S. et al. Catalytically inactive long prokaryotic Argonaute systems employ distinct effectors to confer immunity via abortive infection // Nat. Commun. 2023. V. 14. № 1. P. 6970. https://doi.org/10.1038/s41467-023-42793-3
- Manakova E., Golovinas E., Poceviciute R. et al. The missing part: The Archaeoglobus fulgidus Argonaute forms a functional heterodimer with an N-L1-L2 domain protein // Nucl. Ac. Res. 2024. https://doi.org/10.1093/nar/gkad1241
- Zeng Z., Chen Y., Pinilla-Redondo R. et al. A short prokaryotic Argonaute activates membrane effector to confer antiviral defense // Cell Host Microbe. 2022. V. 30. № 7. P. 930–943 e6. https://doi.org/10.1016/j.chom.2022.04.015
- Loeff L., Adams D.W., Chanez C. et al. Molecular mechanism of plasmid elimination by the DdmDE defense system // Science. 2024. V. 385. № 6705. P. 188–194. https://doi.org/10.1126/science.adq0534
- Bravo J.P.K., Ramos D.A., Fregoso Ocampo R. et al. Plasmid targeting and destruction by the DdmDE bacterial defence system // Nature. 2024. V. 630. № 8018. P. 961–967. https://doi.org/10.1038/s41586-024-07515-9
- Yang X.Y., Shen Z., Wang C. et al. DdmDE eliminates plasmid invasion by DNA-guided DNA targeting // Cell. 2024. V. 187. № 19. P. 5253–5266 e16. https://doi.org/10.1016/j.cell.2024.07.028
- Koopal B., Mutte S.K., Swarts D.C. A long look at short prokaryotic Argonautes // Trends Cell Biol. 2023. V. 33. № 7. P. 605–618. https://doi.org/10.1016/j.tcb.2022.10.005
- Koopal B., Potocnik A., Mutte S.K. et al. Short prokaryotic Argonaute systems trigger cell death upon detection of invading DNA // Cell. 2022. V. 185. № 9. P. 1471–1486 e19. https://doi.org/10.1016/j.cell.2022.03.012
- Prostova M., Kanevskaya A., Panteleev V. et al. DNAtargeting short Argonautes complex with effector proteins for collateral nuclease activity and bacterial population immunity // Nat. Microbiol. 2024. V. 9. P. 1368–1381. https://doi.org/10.1038/s41564-024-01654-5
- Lu X., Xiao J., Wang L. et al. The nuclease-associated short prokaryotic Argonaute system nonspecifically degrades DNA upon activation by target recognition // Nucl. Ac. Res. 2024. V. 52. № 2. P. 844–855. https://doi.org/10.1093/nar/gkad1145
- Zaremba M., Dakineviciene D., Golovinas E. et al. Short prokaryotic Argonautes provide defence against incoming mobile genetic elements through NAD(+) depletion // Nat. Microbiol. 2022. V. 7. № 11. P. 1857–1869. https://doi.org/10.1038/s41564-022-01239-0
- Gao X., Shang K., Zhu K. et al. Nucleic-acid-triggered NADase activation of a short prokaryotic Argonaute // Nature. 2024. V. 625. № 7996. P. 822–831. https://doi.org/10.1038/s41586-023-06665-6
- Finocchio G., Koopal B., Potocnik A. et al. Target DNA-dependent activation mechanism of the prokaryotic immune system SPARTA // Nucl. Ac. Res. 2024. V. 52. P. 2012–2029. https://doi.org/10.1093/nar/gkad1248
- Shen Z., Yang X.Y., Xia S. et al. Oligomerizationmediated activation of a short prokaryotic Argonaute // Nature. 2023. V. 621. № 7977. P. 154–161. https://doi.org/10.1038/s41586-023-06456-z
- Cui N., Zhang J.T., Li Z. et al. Tetramerizationdependent activation of the Sir2-associated short prokaryotic Argonaute immune system // Nat. Commun. 2024. V. 15. № 1. P. 8610. https://doi.org/10.1038/s41467-024-52910-5
- Kim S.Y., Jung Y., Lim D. Argonaute system of Kordia jejudonensis is a heterodimeric nucleic acid-guided nuclease // Biochem. Biophys. Res. Commun. 2020. V. 525. № 3. P. 755–758. https://doi.org/10.1016/j.bbrc.2020.02.145
- Potocnik A., Swarts D.C. Short prokaryotic Argonaute system repurposed as a nucleic acid detection tool // Clin. Transl. Med. 2022. V. 12. № 9. https://doi.org/10.1002/ctm2.1059
补充文件

