РЕПАРАЦИЯ ДНК В ОБЕСПЕЧЕНИИ СТАБИЛЬНОСТИ ГЕНОМА И ЗДОРОВЬЯ ЧЕЛОВЕКА
- Авторы: Речкунова Н.И.1, Лаврик О.И.1
-
Учреждения:
- Институт химической биологии и фундаментальной медицины Сибирского отделения Российской академии наук
- Выпуск: Том 61, № 11 (2025)
- Страницы: 119–127
- Раздел: ГЕНЕТИКА ЧЕЛОВЕКА
- URL: https://journals.rcsi.science/0016-6758/article/view/361192
- DOI: https://doi.org/10.7868/S303451032510146
- ID: 361192
Цитировать
Аннотация
Ключевые слова
Об авторах
Н. И. Речкунова
Институт химической биологии и фундаментальной медицины Сибирского отделения Российской академии наукНовосибирск, 630090 Россия
О. И. Лаврик
Институт химической биологии и фундаментальной медицины Сибирского отделения Российской академии наук
Email: lavrik@niboch.nsc.ru
Новосибирск, 630090 Россия
Список литературы
- Friedberg E.C. DNA damage and repair // Nature. 2003. V. 421. № 6921. P. 436–440. https://doi.org/10.1038/nature01408
- Niedernhofer L.J., Gurkar A.U., Wang Y. et al. Nuclear genomic instability and aging // Annu. Rev. Biochem. 2018. V. 87. P. 295–322. https://doi.org/10.1146/annurev-biochem-062917-012239
- Alemasova E.E., Lavrik O.I. Poly(ADP-ribosyl)ation by PARP1: Reaction mechanism and regulatory proteins // Nucl. Acids Res. 2019. V. 47. № 8. P. 3811–3827. https://doi.org/10.1093/nar/gkz120
- Schreiber V., Illuzzi G., Heberlé E., Dantzer F. From poly(ADP-ribose) discovery to PARP inhibitors in cancer therapy // Bull. Cancer. 2015. V. 102. № 10. P. 863–873. https://doi.org/10.1016/j.bulcan.2015.07.012
- Curtin N.J., Szabo C. Poly(ADP-ribose)polymerase inhibition: Past, present and future // Nat. Rev. Drug Discov. 2020. V. 19. № 10. P. 711–736. https://doi.org/10.1038/s41573-020-0076-6
- Ходырева С.Н., Лаврик О.И. Поли(ADP-рибоза)полимераза 1 – ключевой регулятор репарации ДНК // Мол. биология. 2016. Т. 50. № 4. С. 655–673.
- Amé J.C., Rolli V., Schreiber V. et al. PARP-2, a novel mammalian DNA damage-dependent poly(ADP-ribose)polymerase // J. Biol. Chem. 1999. V. 274. № 25. P. 17860–17868. https://doi.org/10.1074/jbc.274.25.17860
- Yélamos J., Schreiber V., Dantzer F. Toward specific functions of poly(ADP-ribose)polymerase-2 // Trends Mol. Med. 2008. V. 14. № 4. P. 169–178. https://doi.org/10.1016/j.molmed.2008.02.003
- De Vos M., Schreiber V., Dantzer F. The diverse roles and clinical relevance of PARPs in DNA damage repair: Current state of the art // Biochem. Pharmacol. 2012. V. 84. № 2. P. 137–146. https://doi.org/10.1016/j.bcp.2012.03.018
- Lavrik O.I. PARPs’ impact on base excision DNA repair // DNA Repair (Amst.). 2020. V. 93. https://doi.org/10.1016/j.dnarep.2020.102911
- Речкунова Н.И., Мальцева Е.А., Лаврик О.И. Посттрансляционные модификации белков эксцизионной репарации нуклеотидов и их роль в регуляции процесса // Биохимия. 2019. Т. 84. № 9. С. 1244–1258.
- Kutuzov M.M., Belousova E.A., Ilina E.S., Lavrik O.I. Impact of PARP1, PARP2 & PARP3 on the base excision repair of nucleosomal DNA // Adv. Exp. Med. Biol. 2020. V. 1241. P. 47–57. https://doi.org/10.1007/978-3-030-41283-8_4
- Sukhanova M.V., Abrakhi S., Josi V. et al. Single molecule detection of PARP1 and PARP2 interaction with DNA strand breaks and their poly(ADP-ribosyl)action using high-resolution AFM imaging // Nucl. Acids Res. 2016. V. 44. № 6. P. e60. https://doi.org/10.1093/nar/gkv1476
- Sukhanova M.V., Hamon L., Kutuzov M.M. et al. A single-molecule atomic force microscopy study of PARP1 and PARP2 recognition of base excision repair DNA intermediates // J. Mol. Biol. 2019. V. 431. № 15. P. 2655–2673. https://doi.org/10.1016/j.jmb.2019.05.028
- Vågbø C.B., Slupphaug G. RNA in DNA repair // DNA Repair (Amst.). 2020. V. 95. https://doi.org/10.1016/j.dnarep.2020.102927
- Singatulina A.S., Hamon L., Sukhanova M.V. et al. PARP-1 activation directs FUS to DNA damage sites to form PARG-reversible compartments enriched in damaged DNA // Cell Rep. 2019. V. 27. № 6. P. 1809–1821. https://doi.org/10.1016/j.celrep.2019.04.031
- Алемасова Е.Э., Лаврик О.И. На стыке трех нуклеиновых кислот: роль РНК-связывающих белков и поли(ADP-рибозы) в репарации ДНК // Acta Naturea. 2017. Т. 9. № 2. С. 4–17.
- Alemasova E.E., Lavrik O.I. A sePARate phase? Poly(ADP-ribose) versus RNA in the organization of biomolecular condensates // Nucl. Acids Res. 2022. V. 50. № 19. P. 10817–10838. https://doi.org/10.1093/nar/gkac866
- Altmeyer M., Neelsen K.J., Teloni F. et al. Liquid demixing of intrinsically disordered proteins is seeded by poly(ADP-ribose) // Nat. Commun. 2015. V. 6. P. 8088. https://doi.org/10.1038/ncomms9088
- Dasovich M., Leung A.K.L. PARPs and ADP-ribosylation: Deciphering the complexity with molecular tools // Mol. Cell. 2023. V. 83. № 10. P. 1552–1572. https://doi.org/10.1016/j.molcel.2023.04.009
- Mamonova E.M., Clément M.J., Sukhanova M.V. et al. FUS RRM regulates poly(ADP-ribose) levels after transcriptional arrest and PARP-1 activation on DNA damage // Cell Rep. 2023. V. 42. № 10. https://doi.org/10.1016/j.celrep.2023.113199
- Patel A., Lee H.O., Jawerth L. et al. A liquid-to-solid phase transition of the ALS protein FUS accelerated by disease mutation // Cell. 2015. V. 162. № 5. P. 1066–1077. https://doi.org/10.1016/j.cell.2015.07.047
- Jungmichel S., Rosenthal F., Altmeyer M. et al. Proteome-wide identification of poly(ADP-Ribosyl)action targets in different genotoxic stress responses // Mol. Cell. 2013. V. 52. № 2. P. 272–285. https://doi.org/10.1016/j.molcel.2013.08.026
- Rulten S.L., Rotheray A., Green R.L. et al. PARP-1 dependent recruitment of the amyotrophic lateral sclerosis-associated protein FUS/TLS to sites of oxidative DNA damage // Nucl. Acids Res. 2014. V. 42. № 1. P. 307–314. https://doi.org/10.1093/nar/gkt835
- Sukhanova M.V., Singatulina A.S., Pastré D., Lavrik O.I. Fused in sarcoma (FUS) in DNA repair: Tango with poly(ADP-ribose) polymerase 1 and compartmentalization of damaged DNA // Int. J. Mol. Sci. 2020. V. 21. № 19. https://doi.org/10.3390/ijms21197020
- Gibbs-Seymour I., Fontana P., Rack J.G.M., Ahel I. HPF1/Cdorf27 is a PARP-1-interacting protein that regulates PARP-1 ADP-ribosylation activity // Mol. Cell. 2016. V. 62. № 3. P. 432–442. https://doi.org/10.1016/j.molcel.2016.03.008
- Suskiewicz M.J., Zobel F., Ogden T.E.H. et al. HPF1 completes the PARP active site for DNA damage-induced ADP-ribosylation // Nature. 2020. V. 579. № 7800. P. 598–602. https://doi.org/10.1038/s41586-020-2013-6
- Bonfiglio J.J., Fontana P., Zhang Q. et al. Serine ADP-ribosylation depends on HPF1 // Mol. Cell. 2017. V. 65. № 5. P. 932–940. https://doi.org/10.1016/j.molcel.2017.01.003
- Palazzo L., Leidecker O., Prokhorova E. et al. Serine is the major residue for ADP-ribosylation upon DNA damage // Elife. 2018. V. 7. https://doi.org/10.7554/eLife.34334
- Leidecker O., Bonfiglio J.J., Colby T. et al. Serine is a new target residue for endogenous ADP-ribosylation on histones // Nat. Chem. Biol. 2016. V. 12. № 12. P. 998–1000. https://doi.org/10.1038/nchembio.2180
- Sun F.H., Zhao P., Zhang N. et al. HPF1 remodels the active site of PARP1 to enable the serine ADP-ribosylation of histones // Nat. Commun. 2021. V. 12. № 1. P. 1028. https://doi.org/10.1038/s41467-021-21302-4
- Kurgina T.A., Moor N.A., Kutuzov M.M. et al. Dual function of HPF1 in the modulation of PARP1 and PARP2 activities // Commun. Biol. 2021. V. 4. № 1. P. 1259. https://doi.org/10.1038/s42003-021-02780-0
- Langelier M.F., Billur R., Sverzhinsky A. et al. HPF1 dynamically controls the PARP1/2 balance between initiating and elongating ADP-ribose modifications // Nat. Commun. 2021. V. 12. № 1. P. 6675. https://doi.org/10.1038/s41467-021-27043-8
- Rudolph J., Roberts G., Mathurajan U.M., Luger K. HPF1 and nucleosomes mediate a dramatic switch in activity of PARP1 from polymerase to hydrolase // Elife. 2021. V. 10. https://doi.org/10.7554/eLife.65773
- Prokhorova E., Zobel F., Smith R. et al. Serine-linked PARP1 auto-modification controls PARP inhibitor response // Nat. Commun. 2021. V. 12. № 1. P. 4055. https://doi.org/10.1038/s41467-021-24361-9
- Gaullier G., Roberts G., Muthurajan U.M. et al. Bridging of nucleosome-proximal DNA double-strand breaks by PARP2 enhances its interaction with HPF1 // PLoS One. 2020. V. 15. № 11. https://doi.org/10.1371/journal.pone.0240932
- Rudolph J., Roberts G., Luger K. Histone Parylation factor 1 contributes to the inhibition of PARP1 by cancer drugs // Nat. Commun. 2021. V. 12. № 1. P. 736. https://doi.org/10.1038/s41467-021-20998-8
- Kurgina T.A., Moor N.A., Kutuzov M.M., Lavrik O.I. The HPF1-dependent histone PARylation catalyzed by PARP2 is specifically stimulated by an incised AP site-containing BER DNA intermediate // DNA Repair (Amst.). 2022. V. 120. https://doi.org/10.1016/j.dnarep.2022.103423
- Longarini E.J., Dauben H., Locatelli C. et al. Modular antibodies reveal DNA damage-induced mono-ADP-ribosylation as a second wave of PARP1 signaling // Mol. Cell. 2023. V. 83. № 10. P. 1743–1760. https://doi.org/10.1016/j.molcel.2023.03.027
- Lin X., Jiang W., Rudolph J. et al. PARP inhibitors trap PARP2 and alter the mode of recruitment of PARP2 at DNA damage sites // Nucl. Acids Res. 2022. V. 50. № 7. P. 3958–3973. https://doi.org/10.1093/nar/gkac188
- Flippot R., Patrikidou A., Aldea M. et al. PARP inhibition, a new therapeutic avenue in patients with prostate cancer // Drugs. 2022. V. 82. № 7. P. 719–733. https://doi.org/10.1007/s40265-022-01703-5
- Sim H.W., Galanis E., Khasraw M. PARP inhibitors in glioma: A review of therapeutic opportunities // Cancer (Basel). 2022. V. 14. № 4. https://doi.org/10.3390/cancers14041003
- Sonnenblick A., de Azambuja E., Azim H.A., Piccart M. An update on PARP inhibitors – moving to the adjuvant setting // Nat. Rev. Clin. Oncol. 2015. V. 12. № 1. P. 27–41. https://doi.org/10.1038/nrclinone.2014.163
Дополнительные файлы


