A Minimally Invasive Method for Monitoring Age-Associated Changes in Gene Expression in Fish Nothobranchius guentheri
- Autores: Volodin V.V.1, Gladysh N.S.1,2, Bulavkina E.V.1, Snezhkina A.V.1, Aliper G.M.1, Krysanov E.Y.3, Grechishkina P.S.1,2, Fadeev V.S.1, Kudryavtsev A.A.1,4, Nikiforov-Nikishin A.L.4, Kochetkov N.I.4, Moskalev A.A.1, Krasnov G.S.1, Kudryavtseva A.V.1
-
Afiliações:
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences
- National Research University Higher School of Economics, Department of Biology and Biotechnology
- Severtsov Institute for Problems of Ecology and Evolution, Russian Academy of Sciences
- Razumovsky Moscow State University of Technology and Management
- Edição: Volume 61, Nº 9 (2025)
- Páginas: 78-85
- Seção: ГЕНЕТИКА ЖИВОТНЫХ
- URL: https://journals.rcsi.science/0016-6758/article/view/353930
- DOI: https://doi.org/10.7868/S3034510325090072
- ID: 353930
Citar
Resumo
Fish of the genus Nothobranchius are a unique model object of longevity genetics due to their short life span. They are especially promising for testing geroprotectors. However, the small size of the fish does not allow for dynamic evaluation of parameters reflecting aging rate and response to experimental effects on the same individual. The aim of the study was to develop an approach for minimally invasive monitoring of age-related changes in a model of Nothobranchius guentheri. The caudal fin transcriptomes of female and male Nothobranchius guentheri of different ages, including those regenerated after resection, were sequenced. Differential gene expression was analysed. Gene expression profiles in caudal fins of Nothobranchius guentheri, regenerated once or twice, do not differ significantly when compared with intact fins. The results obtained open new prospects for minimally invasive monitoring of age-dependent changes in the organism at the molecular-genetic level, including the study of potential geroprotectors.
Palavras-chave
Sobre autores
V. Volodin
Engelhardt Institute of Molecular Biology, Russian Academy of Sciences
Autor responsável pela correspondência
Email: vsevolodvolodin@yandex.ru
Moscow, 119991 Russia
N. Gladysh
Engelhardt Institute of Molecular Biology, Russian Academy of Sciences; National Research University Higher School of Economics, Department of Biology and Biotechnology
Email: vsevolodvolodin@yandex.ru
Moscow, 119991 Russia; Moscow, 101000 Russia
E. Bulavkina
Engelhardt Institute of Molecular Biology, Russian Academy of Sciences
Email: vsevolodvolodin@yandex.ru
Moscow, 119991 Russia
A. Snezhkina
Engelhardt Institute of Molecular Biology, Russian Academy of Sciences
Email: vsevolodvolodin@yandex.ru
Moscow, 119991 Russia
G. Aliper
Engelhardt Institute of Molecular Biology, Russian Academy of Sciences
Email: vsevolodvolodin@yandex.ru
Moscow, 119991 Russia
E. Krysanov
Severtsov Institute for Problems of Ecology and Evolution, Russian Academy of Sciences
Email: vsevolodvolodin@yandex.ru
Moscow, 119071 Russia
P. Grechishkina
Engelhardt Institute of Molecular Biology, Russian Academy of Sciences; National Research University Higher School of Economics, Department of Biology and Biotechnology
Email: vsevolodvolodin@yandex.ru
Moscow, 119991 Russia; Moscow, 101000 Russia
V. Fadeev
Engelhardt Institute of Molecular Biology, Russian Academy of Sciences
Email: vsevolodvolodin@yandex.ru
Moscow, 119991 Russia
A. Kudryavtsev
Engelhardt Institute of Molecular Biology, Russian Academy of Sciences; Razumovsky Moscow State University of Technology and Management
Email: vsevolodvolodin@yandex.ru
Moscow, 119991 Russia; Moscow, 109004 Russia
A. Nikiforov-Nikishin
Razumovsky Moscow State University of Technology and Management
Email: vsevolodvolodin@yandex.ru
Moscow, 109004 Russia
N. Kochetkov
Razumovsky Moscow State University of Technology and Management
Email: vsevolodvolodin@yandex.ru
Moscow, 109004 Russia
A. Moskalev
Engelhardt Institute of Molecular Biology, Russian Academy of Sciences
Email: vsevolodvolodin@yandex.ru
Moscow, 119991 Russia
G. Krasnov
Engelhardt Institute of Molecular Biology, Russian Academy of Sciences
Email: vsevolodvolodin@yandex.ru
Moscow, 119991 Russia
A. Kudryavtseva
Engelhardt Institute of Molecular Biology, Russian Academy of Sciences
Email: vsevolodvolodin@yandex.ru
Moscow, 119991 Russia
Bibliografia
- Levine M.E., Lu A.T., Quach A. et al. An epigenetic biomarker of aging for lifespan and healthspan // Aging. 2018. V. 10. № 4. P. 573–591. https://doi.org/10.18632/aging.101414
- Horvath S. DNA methylation age of human tissues and cell types // Genome Biol. 2013. V. 14. № 10. P. 3156. https://doi.org/10.1186/gb-2013-14-10-r115
- Horvath S., Haghani A., Peng S. et al. DNA methylation aging and transcriptomic studies in horses: 1 // Nat. Commun. 2022. V. 13. № 1. P. 40. https://doi.org/10.1038/s41467-021-27754-y
- Thompson M.J., von Holdt B., Horvath S. et al. An epigenetic aging clock for dogs and wolves // Aging. 2017. V. 9. № 3. P. 1055–1068. https://doi.org/10.18632/aging.101211
- Prado N.A., Brown J.L., Zoller J.A. et al. Epigenetic clock and methylation studies in elephants // Aging Cell. 2021. V. 20. № 7. https://doi.org/10.1111/acel.13414
- Raj K., Szladovits B., Haghani A. et al. Epigenetic clock and methylation studies in cats // GeroScience. 2021. V. 43. № 5. P. 2363–2378. https://doi.org/10.1007/s11357-021-00445-8
- Bors E.K., Baker C.S., Wade P.R. et al. An epigenetic clock to estimate the age of living beluga whales // Evol. Applications. 2021. V. 14. № 5. P. 1263–1273. https://doi.org/10.1111/eva.13195
- Mayne B., Mustin W., Baboolal V. et al. Age prediction of green turtles with an epigenetic clock // Mol. Ecol. Res. 2022. V. 22. № 6. P. 2275–2284. https://doi.org/10.1111/1755-0998.13621
- Jasinska A.J., Haghani A., Zoller J.A. et al. Epigenetic clock and methylation studies in vervet monkeys // GeroScience. 2022. V. 44. № 2. P. 699–717. https://doi.org/10.1007/s11357-021-00466-3
- Meyer D.H., Schumacher B. BiT age: A transcriptome-based aging clock near the theoretical limit of accuracy // Aging Cell. 2021. V. 20. № 3. https://doi.org/10.1111/acel.13320
- Mayne B., Korbie D., Kenchington L. et al. A DNA methylation age predictor for zebrafish // Aging. 2020. V. 12. № 24. P. 24817–24835. https://doi.org/10.18632/aging.202400
- Cowell J.K. LGI1: From zebrafish to human epilepsy // Prog. Brain Res. 2014. V. 213. P. 159–179. https://doi.org/ 10.1016/B978-0-444-63326-2.00009-0
- Clark K.J., Boczek N.J. Stressing zebrafish for beha- vioral genetics // Revneuro. 2011. V. 22. № 1. P. 49–62. https://doi.org/10.1515/rns.2011.007
- Poss K.D., Keating M.T., Nechiporuk A. Tales of regeneration in zebrafish // Develop. Dynamics. 2003. V. 226. № 2. P. 202–210. https://doi.org/10.1002/dvdy.10220
- Yu L., Tucci V., Kishi S. et al. Cognitive аging in zebrafish // PLоS One. 2006. V. 1. № 1. https://doi.org/10.1371/journal.pone.0000014
- Lucas-Sánchez A. Nothobranchius as a model for aging studies. A review // Аging Dis. 2014. https://doi.org/10.14336/ad.2014.0500281
- Dolfi L., Ripa R., Medelbekova D. et al. Nonlethal blood sampling from the killifish Nothobranchius furzeri // Cold Spring Harb. Protoc. 2023. V. 2023. № 8. https://doi.org/10.1101/pdb.prot107745
- Bauer M.E. Chronic stress and immunosenescence: A review // Neuroimmunomodulation. 2008. V. 15. № 4–6. P. 241–250. https://doi.org/10.1159/000156467
- Palma-Gudiel H., Fañanás L., Horvath S. et al. Psychosocial stress and epigenetic aging // Int. Rev. Neurobiology. 2020. V. 150. P. 107–128. https://doi.org/10.1016/bs.irn.2019.10.020
- Beery A.K., Lin J., Biddle J.S. et al. Chronic stress elevates telomerase activity in rats // Biol. Lett. 2012. V. 8. № 6. P. 1063–1066. https://doi.org/10.1098/rsbl.2012.0747
- Bakhtogarimov I.R., Kudryavtseva A.V., Krasnov G.S. et al. The effect of meclofenoxate on the transcriptome of aging brain of Nothobranchius guentheri annual killifish // IJMS. 2022. V. 23. № 5. https://doi.org/10.3390/ijms23052491
- Bushmanova E., Antipov D., Lapidus A. et al. rnaQUAST: A quality assessment tool for de novo transcriptome assemblies // Bioinformatics. 2016. V. 32. № 14. P. 2210–2212. https://doi.org/10.1093/bioinformatics/btw218
- Li B., Dewey C.N. RSEM: Accurate transcript quantification from RNA-Seq data with or without a reference genome // BMC Bioinformatics. 2011. V. 12. № 1. https://doi.org/10.1186/1471-2105-12-323
Arquivos suplementares

