A Minimally Invasive Method for Monitoring Age-Associated Changes in Gene Expression in Fish Nothobranchius guentheri

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Fish of the genus Nothobranchius are a unique model object of longevity genetics due to their short life span. They are especially promising for testing geroprotectors. However, the small size of the fish does not allow for dynamic evaluation of parameters reflecting aging rate and response to experimental effects on the same individual. The aim of the study was to develop an approach for minimally invasive monitoring of age-related changes in a model of Nothobranchius guentheri. The caudal fin transcriptomes of female and male Nothobranchius guentheri of different ages, including those regenerated after resection, were sequenced. Differential gene expression was analysed. Gene expression profiles in caudal fins of Nothobranchius guentheri, regenerated once or twice, do not differ significantly when compared with intact fins. The results obtained open new prospects for minimally invasive monitoring of age-dependent changes in the organism at the molecular-genetic level, including the study of potential geroprotectors.

About the authors

V. V. Volodin

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

Author for correspondence.
Email: vsevolodvolodin@yandex.ru
Moscow, 119991 Russia

N. S. Gladysh

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences; National Research University Higher School of Economics, Department of Biology and Biotechnology

Email: vsevolodvolodin@yandex.ru
Moscow, 119991 Russia; Moscow, 101000 Russia

E. V. Bulavkina

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

Email: vsevolodvolodin@yandex.ru
Moscow, 119991 Russia

A. V. Snezhkina

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

Email: vsevolodvolodin@yandex.ru
Moscow, 119991 Russia

G. M. Aliper

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

Email: vsevolodvolodin@yandex.ru
Moscow, 119991 Russia

E. Y. Krysanov

Severtsov Institute for Problems of Ecology and Evolution, Russian Academy of Sciences

Email: vsevolodvolodin@yandex.ru
Moscow, 119071 Russia

P. S. Grechishkina

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences; National Research University Higher School of Economics, Department of Biology and Biotechnology

Email: vsevolodvolodin@yandex.ru
Moscow, 119991 Russia; Moscow, 101000 Russia

V. S. Fadeev

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

Email: vsevolodvolodin@yandex.ru
Moscow, 119991 Russia

A. A. Kudryavtsev

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences; Razumovsky Moscow State University of Technology and Management

Email: vsevolodvolodin@yandex.ru
Moscow, 119991 Russia; Moscow, 109004 Russia

A. L. Nikiforov-Nikishin

Razumovsky Moscow State University of Technology and Management

Email: vsevolodvolodin@yandex.ru
Moscow, 109004 Russia

N. I. Kochetkov

Razumovsky Moscow State University of Technology and Management

Email: vsevolodvolodin@yandex.ru
Moscow, 109004 Russia

A. A. Moskalev

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

Email: vsevolodvolodin@yandex.ru
Moscow, 119991 Russia

G. S. Krasnov

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

Email: vsevolodvolodin@yandex.ru
Moscow, 119991 Russia

A. V. Kudryavtseva

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

Email: vsevolodvolodin@yandex.ru
Moscow, 119991 Russia

References

  1. Levine M.E., Lu A.T., Quach A. et al. An epigenetic biomarker of aging for lifespan and healthspan // Aging. 2018. V. 10. № 4. P. 573–591. https://doi.org/10.18632/aging.101414
  2. Horvath S. DNA methylation age of human tissues and cell types // Genome Biol. 2013. V. 14. № 10. P. 3156. https://doi.org/10.1186/gb-2013-14-10-r115
  3. Horvath S., Haghani A., Peng S. et al. DNA methylation aging and transcriptomic studies in horses: 1 // Nat. Commun. 2022. V. 13. № 1. P. 40. https://doi.org/10.1038/s41467-021-27754-y
  4. Thompson M.J., von Holdt B., Horvath S. et al. An epigenetic aging clock for dogs and wolves // Aging. 2017. V. 9. № 3. P. 1055–1068. https://doi.org/10.18632/aging.101211
  5. Prado N.A., Brown J.L., Zoller J.A. et al. Epigenetic clock and methylation studies in elephants // Aging Cell. 2021. V. 20. № 7. https://doi.org/10.1111/acel.13414
  6. Raj K., Szladovits B., Haghani A. et al. Epigenetic clock and methylation studies in cats // GeroScience. 2021. V. 43. № 5. P. 2363–2378. https://doi.org/10.1007/s11357-021-00445-8
  7. Bors E.K., Baker C.S., Wade P.R. et al. An epigenetic clock to estimate the age of living beluga whales // Evol. Applications. 2021. V. 14. № 5. P. 1263–1273. https://doi.org/10.1111/eva.13195
  8. Mayne B., Mustin W., Baboolal V. et al. Age prediction of green turtles with an epigenetic clock // Mol. Ecol. Res. 2022. V. 22. № 6. P. 2275–2284. https://doi.org/10.1111/1755-0998.13621
  9. Jasinska A.J., Haghani A., Zoller J.A. et al. Epigenetic clock and methylation studies in vervet monkeys // GeroScience. 2022. V. 44. № 2. P. 699–717. https://doi.org/10.1007/s11357-021-00466-3
  10. Meyer D.H., Schumacher B. BiT age: A transcriptome-based aging clock near the theoretical limit of accuracy // Aging Cell. 2021. V. 20. № 3. https://doi.org/10.1111/acel.13320
  11. Mayne B., Korbie D., Kenchington L. et al. A DNA methylation age predictor for zebrafish // Aging. 2020. V. 12. № 24. P. 24817–24835. https://doi.org/10.18632/aging.202400
  12. Cowell J.K. LGI1: From zebrafish to human epilepsy // Prog. Brain Res. 2014. V. 213. P. 159–179. https://doi.org/ 10.1016/B978-0-444-63326-2.00009-0
  13. Clark K.J., Boczek N.J. Stressing zebrafish for beha- vioral genetics // Revneuro. 2011. V. 22. № 1. P. 49–62. https://doi.org/10.1515/rns.2011.007
  14. Poss K.D., Keating M.T., Nechiporuk A. Tales of regeneration in zebrafish // Develop. Dynamics. 2003. V. 226. № 2. P. 202–210. https://doi.org/10.1002/dvdy.10220
  15. Yu L., Tucci V., Kishi S. et al. Cognitive аging in zebrafish // PLоS One. 2006. V. 1. № 1. https://doi.org/10.1371/journal.pone.0000014
  16. Lucas-Sánchez A. Nothobranchius as a model for aging studies. A review // Аging Dis. 2014. https://doi.org/10.14336/ad.2014.0500281
  17. Dolfi L., Ripa R., Medelbekova D. et al. Nonlethal blood sampling from the killifish Nothobranchius furzeri // Cold Spring Harb. Protoc. 2023. V. 2023. № 8. https://doi.org/10.1101/pdb.prot107745
  18. Bauer M.E. Chronic stress and immunosenescence: A review // Neuroimmunomodulation. 2008. V. 15. № 4–6. P. 241–250. https://doi.org/10.1159/000156467
  19. Palma-Gudiel H., Fañanás L., Horvath S. et al. Psychosocial stress and epigenetic aging // Int. Rev. Neurobiology. 2020. V. 150. P. 107–128. https://doi.org/10.1016/bs.irn.2019.10.020
  20. Beery A.K., Lin J., Biddle J.S. et al. Chronic stress elevates telomerase activity in rats // Biol. Lett. 2012. V. 8. № 6. P. 1063–1066. https://doi.org/10.1098/rsbl.2012.0747
  21. Bakhtogarimov I.R., Kudryavtseva A.V., Krasnov G.S. et al. The effect of meclofenoxate on the transcriptome of aging brain of Nothobranchius guentheri annual killifish // IJMS. 2022. V. 23. № 5. https://doi.org/10.3390/ijms23052491
  22. Bushmanova E., Antipov D., Lapidus A. et al. rnaQUAST: A quality assessment tool for de novo transcriptome assemblies // Bioinformatics. 2016. V. 32. № 14. P. 2210–2212. https://doi.org/10.1093/bioinformatics/btw218
  23. Li B., Dewey C.N. RSEM: Accurate transcript quantification from RNA-Seq data with or without a reference genome // BMC Bioinformatics. 2011. V. 12. № 1. https://doi.org/10.1186/1471-2105-12-323

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).