Genetic Factors of Polymorphic Teratozoospermia Development in Humans
- 作者: Kleshchev M.A.1, Osadchuk A.V.1, Osadchuk L.V.1
-
隶属关系:
- Federal Research Center Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences
- 期: 卷 61, 编号 9 (2025)
- 页面: 3-22
- 栏目: ОБЗОРНЫЕ И ТЕОРЕТИЧЕСКИЕ СТАТЬИ
- URL: https://journals.rcsi.science/0016-6758/article/view/353924
- DOI: https://doi.org/10.7868/S3034510325090014
- ID: 353924
如何引用文章
详细
Nonspecific (polymorphic) teratozoospermia is a common male fertility, when the proportion of morphologically normal spermatozoa is lower than the reference values, while several types of morphological abnormalities of spermatozoa in different proportions are observed in the ejaculate sample. Polymorphic teratozoospermia is known to be resuled from both negative environmental and lifestyle factors, as well as the presence of pathogenic variants of certain genes. However, little attention is paid to the study of the genetic causes of polymorphic teratozoospermia. In this review, for the first time, as a result of an analysis of the published literature, as well as information from the databases Malacards, OMIM, KEGG, CTD, and DisGeNET, the evidence on 85 pathogenic variants of 51 genes related to the development of polymorphic teratozoospermia in humans has been obtained and systematized. According to the functional annotation of genes and the analysis of published literature, the products of these genes are involved in the organization of the components of the cytoskeleton of the spermatid – acroplaxome and perinuclear theca, which ensure the formation of the acrosome and the interaction of the acrosome vesicle with the nucleus, as well as intracellular transport of molecules, regulation of protein expression and degradation, and chromatin rearrangement during spermiogenesis. In addition, pathogenic variants of some genes lead to a decrease in the effectiveness of the natural antioxidant protection of cells and, as a result, the manifestation of teratozoospermia. This information can be useful for the diagnosis and choice of treatment tactics for polymorphic teratozoospermia, which can be caused by both genetic causes and the influence of negative environmental and lifestyle factors.
作者简介
M. Kleshchev
Federal Research Center Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences
编辑信件的主要联系方式.
Email: max82cll@bionet.nsc.ru
Novosibirsk, 630090 Russia
A. Osadchuk
Federal Research Center Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences
Email: max82cll@bionet.nsc.ru
Novosibirsk, 630090 Russia
L. Osadchuk
Federal Research Center Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences
Email: max82cll@bionet.nsc.ru
Novosibirsk, 630090 Russia
参考
- World Health Organization. WHO laboratory manual for the examination and processing of human semen. 6th edn. WorldHealth Organization: Geneva. 2021.
- World Health Organization. WHO laboratory manual for the examination and processing of human semen. 6th edn. World Health Organization: Geneva. 2010.
- Atmoko W., Savira M., Shah R. et al. Isolated teratozoospermia: revisiting its relevance in male infertility: А narrative review // Transl. Androl. Urol. 2024. V. 13. № 2. P. 260–273. https://doi.org/10.21037/tau-23-397
- Krausz C., Riera-Escamilla A. Genetics of male inferti- lity // Nat. Rev. Urol. 2018. V. 15. № 6. P. 369–384. https://doi.org/10.1038/s41585-018-0003-3
- de Braekeleer M., Nguyen M.H., Morel F., Perrin A. Genetic aspects of monomorphic teratozoospermia: А review // J. Assisted Reprod. and Genet. 2015. V. 32. № 4. P. 615–623. https://doi.org/10.1007/s10815-015-0433-2
- Crafa A., Condorelli R.A., La Vignera S. et al. Globozoospermia: А case report and systematic review of li- terature // The World J. Men's Health. 2023. V. 41. № 1. P. 49–80. https://doi.org/10.5534/wjmh.220020
- Moreno R.D. Human globozoospermia-related genes and their role in acrosome biogenesis // Wires Me- chanisms Disease. 2023. V. 15. № 2. https://doi.org/10.1002/wsbm.1589
- Kierszenbaum A.L., Tres L.L. The acrosome-acroplaxome-manchette complex and the shaping of the spermatid head // Arch. Histol. And Cytol. 2004. V. 67. № 4. P. 271–284. https://doi.org/10.1679/aohc.67.271
- Ortega V., Oyanedel J., Fleck-Lavergne D. et al. Macro- zoospermia associated with mutations of AURKC gene: First case report in Latin America and literature review // Revista Intern. De Androl. 2020. V. 18. № 4. P. 159–163. https://doi.org/10.1016/j.androl.2019.04.004
- Beurois J., Cazin C., Kherraf Z.E. et al. Genetics of teratozoospermia: Back to the head // Best Practice & Res. Clin. Endocrinol. & Metabolism. 2020. V. 34. № 6. https://doi.org/10.1016/j.beem.2020.101473
- Touré A., Martinez G., Kherraf Z.E. et al. The genetic architecture of morphological abnormalities of the sperm tail // Human Genet. 2021. V. 140. № 1. P. 21–42. https://doi.org/10.1007/s00439-020-02113-x
- Ammar O., Mehdi M., Muratori M. Teratozoospermia: Its association with sperm DNA defects, apoptotic alterations, and oxidative stress // Andrology. 2020. V. 8. № 5. P. 1095–1106. https://doi.org/10.1111/andr.12778
- Braham A., Ghedir H., Zidi I. et al. Nuclear sperm qua- lity in total polymorphic teratozoospermia and its impact on intracytoplasmic sperm injection outcome // Andrologia. 2019. V. 51. № 5. https://doi.org/10.1111/and.13252
- Vicari E., de Palma A., Burrello N. et al. Absolute polymorphic teratozoospermia in patients with oligo-asthenozoospermia is associated with an elevated sperm aneuploidy rate // J. Andrology. 2003. V. 24. № 4. P. 598–603. https://doi.org/10.1002/j.1939-4640.2003.tb02711.x
- Chemes H.E. Phenotypic varieties of sperm pathology: Genetic abnormalities or environmental influences can result in different patterns of abnormal spermatozoa //Animal Reprod. Sci. 2018. V. 194. P. 41–56. https://doi.org/10.1016/j.anireprosci.2018.04.074
- Shabtaie S.A., Gerkowicz S.A., Kohn T.P., Ramasa- my R. Role of abnormal sperm morphology in predicting pregnancy outcomes // Curr. Urol. Rep. 2016. V. 17. № 9. P. 67–78. https://doi.org/10.1007/s11934-016-0623-1
- Kleshchev M.A., Osadchuk A.V., Osadchuk L.V. Genetic variants causing teratozoospermia in humans // Russian Journal оf Genetics. 2024. V. 60. № 11. P. 3–20.
- Ma Y., Xie N., Xie D., Sun L. et al. A novel homozygous FBXO43 mutation associated with male infertility and teratozoospermia in a consanguineous Chinese family // Fertility And Sterility. 2019. V. 111. № 5. P. 909–917. https://doi.org/10.1016/j.fertnstert.2019.01.007
- Zhao S., Meng L.L., Du Z.L., Tan Y.Q. et al. A novel loss-of-function variant in PNLDC1 inducing oligo-astheno-teratozoospermia and male infertility // Asian J. Andrology. 2023. V. 25. № 5. P. 643–645. https://doi.org/10.4103/aja20233
- Demenkov P.S., Ivanisenko T. Kolchanov N.A., Ivani- senko V.A. ANDVisio: A new tool for graphic visualization and analysis of literature mined associative gene networks in the ANDSystem // In Silico Biol. 2011. V. 11. № 3. P. 149–161. https://doi.org/10.3233/ISB-2012-0449
- Wang Y., Chen G., Tang Z. et al. Loss-of-function mutations in IQCN cause male infertility in humans and mice owing to total fertilization failure // Mol. Human Reprod. 2023. V. 29. № 7. https://doi.org/10.1093/molehr/gaad018
- Li Q., Wang Y., Zheng W. et al. Biallelic variants in IQCN cause sperm flagellar assembly defects and male infertility // Hum. Reprod. 2023. V. 38. № 7. P. 1390–1398. https://doi.org/10.1093/humrep/dead079
- Dai J., Li Q., Zhou Q., Zhang S. IQCN disruption causes fertilization failure and male infertility due to manchette assembly defect // EMBO Mol. Medicine. 2022. V. 14. № 12. https://doi.org/10.15252/emmm.202216501
- Teves M.E., Roldan E.R.S. Sperm bauplan and function and underlying processes of sperm formation and selection // Physiol. Reviews. 2022. V. 102. № 1. P. 7–60. https://doi.org/10.1152/physrev.00009.2020
- Gopinathan L., Szmyd R., Low D. et al. Emi2 is essential for mouse spermatogenesis // Cell Reports. 2017. V. 20. № 3. P. 697–708. https://doi.org/10.1016/j.celrep.2017.06.033
- Arafat M., Harlev A., Har-Vardi I. et al. Mutation in CATIP (C2orf62) causes oligoteratoasthenozoospermia by affecting actin dynamics // J. Med. Genetics. 2021. V. 58. № 2. P. 106–115. https://doi.org/10.1136/jmedgenet-2019-106825
- Wang X., Sha Y., Wang W. et al. Novel IFT140 variants cause spermatogenic dysfunction in humans // Mol. Genet. and Genomic Med. 2019. V. 7. № 9. https://doi.org/10.1002/mgg3.920
- Zhang Y., Liu H., Li W. et al. Intraflagellar transporter protein 140 (IFT140), a component of IFT-A complex, is essential for male fertility and spermiogenesis in mice // Cytoskeleton. 2018. V. 75. № 2. P. 70–84. https://doi.org/10.1002/cm.21427
- Lin Y.H., Wang Y.Y., Chen H.I. et al. SEPTIN12 genetic variants confer susceptibility to teratozoospermia // PLoS one. 2012. V. 7. № 3. https://doi.org/10.1371/journal.pone.0034011
- Özkara G., Ersoy Tunali N. SEPTIN12 c.474 G>A polymorphism as a risk factor in teratozoospermic patients // Mol. Biol. Reports. 2021. V. 48. № 5. P. 4073–4081. https://doi.org/10.1007/s11033-021-06417-7
- Lin Y.H., Lin Y.M., Wang Y.Y. The expression level of Septin12 is critical for spermiogenesis // Am. J. Pathology. 2009. V. 174. № 5. P. 1857–1868. https://doi.org/10.2353/ajpath.2009.080955
- Lin Y.H., Chou C.K., Hung Y.C., Yu I.S. SEPT12 deficiency causes sperm nucleus damage and developmental arrest of preimplantation embryos // Fertil. Steril. 2011. V. 95. № 1. P. 363–365. https://doi.org/10.1016/j.fertnstert.2010.07.1064
- Iwamori T., Iwamori N., Matsumoto M. et al. Identification of KIAA1210 as a novel X-chromosome-linked protein that localizes to the acrosome and associates with the ectoplasmic specialization in testes // Biol. Reprod. 2017. V. 96. № 2. P. 469–477. https://doi.org/10.1095/biolreprod.116.145458
- Li Y., Wang Y., Wen Y. et al. Whole-exome sequencing of a cohort of infertile men reveals novel causative genes in teratozoospermia that are chiefly related to sperm head defects // Hum. Reprod. 2022. V. 37. № 1. P. 152–177. https://doi.org/10.1093/humrep/deab229
- Oko R., Sutovsky P. Biogenesis of sperm perinuclear theca and its role in sperm functional competence and fertilization // J. Reprod. Immunol. 2009. V. 83. № 1–2. P. 2–7. https://doi.org/10.1016/j.jri.2009.05.008
- Toshimori K., Ito C. Formation and organization of the mammalian sperm head // Arch. Histol. Cytol. 2003. V. 66. № 5. P. 383–396. https://doi.org/10.1679/aohc.66.383
- Wei Y.L., Yang W.X. The acroframosome-acroplaxome-manchette axis may function in sperm head shaping and male fertility // Gene. 2018. № 660. P. 28–40. https://doi.org/10.1016/j.gene.2018.03.059
- Fan Y., Huang C., Chen J. et al. Mutations in CCIN cause teratozoospermia and male infertility // Sci. Bulletin. 2022. V. 67. № 20. P. 2112–2123. https://doi.org/10.1016/j.scib.2022.09.026
- He J., Liu Q., Wang W. et al. Novel homozygous variant of CCIN causes male infertility owing to the abnormal sperm head with a nuclear subsidence phenotype // Clin. Genet. 2023. V. 103. № 4. P. 495–497. https://doi.org/10.1111/cge.14281
- Dai J., Zhang T., Guo J. et al. Homozygous pathogenic variants in ACTL9 cause fertilization fai-lure and male infertility in humans and mice // Am. J. Hum. Genet. 2021. V. 108. № 3. P. 469–481. https://doi.org/10.1016/j.ajhg.2021.02.004
- Kierszenbaum A.L., Rivkin E., Tres L.L. Molecular biology of sperm head shaping // Soc. Reprod. аnd Fertility Suppl. 2007. V. 65. P. 33–43.
- Zhou X., Xi Q., Jia W. et al. A novel homozygous mutation in ACTL7A leads to male infertility // Mol. Genet. Genomics. 2023. V. 298. № 2. P. 353–360. https://doi.org/10.1007/s00438-022-01985-0
- Zhang Y., Tang J., Wang X. et al. Loss of ACTL7A causes small head sperm by defective acrosome-acroplaxome-manchette complex // Reproduct. Biol. Endocrinol.: Rb&E. 2023. V. 21. № 1. P. 82. https://doi.org/10.1186/s12958-023-01130-5
- Arora M., Mehta P., Sethi S. et al. Genetic etiological spectrum of sperm morphological abnormalities // J. Assist. Reprod. Genet. 2024. V. 41. № 11. P. 2877–2929. https://doi.org/10.1007/s10815-024-03274-8.
- Wang J., Zhang J., Sun X. et al. Novel bi-allelic variants in ACTL7A are associated with male infertility and total fertilization failure // Hum. Reprod. 2021. V. 36. № 12. P. 3161–3169. https://doi.org/10.1093/humrep/deab228
- Xin A., Qu R., Chen G., Zhang L. et al. Disruption in ACTL7A causes acrosomal ultrastructural defects in human and mouse sperm as a novel male factor indu- cing early embryonic arrest // Sci. Adv. 2020. V. 6. № 35. eaaz4796. https://doi.org/10.1126/sciadv.aaz4796
- Heydari R., Seresht-Ahmadi M., Mirshahvaladi S. et al. KIF3B gene silent variant lea-ding to sperm morpho- logy and motility defects and male infertility // Biol. Reprod. 2022. V. 106. № 4. P. 766–774. https://doi.org/10.1093/biolre/ioab226
- Liu C., Shen Y., Shen Q., Zhang W. Novel mutations in X-linked, uSP26-induced asthenoteratozoospermia and male infertility // Cells. 2021. V. 10. № 7. https://doi.org/10.3390/cells10071594
- Liu M., Jiang C., Zhang X., Zhang G. PRSS55 is a novel potential causative gene for human male infertility // Reprod. Biomed. Online. 2022. V. 45. № 3. P. 553–562. https://doi.org/10.1016/j.rbmo.2022.05.016
- Zhu F., Li W., Zhou X. et al. PRSS55 plays an important role in the structural differentiation and energy metabolism of sperm and is required for male fertility in mice // J. Cell. Mol. Med. 2021. V. 25. № 4. P. 2040–2051. https://doi.org/10.1111/jcmm.16116
- Choi Y., Jeon S., Choi M. et al. Mutations in SOHLH1 gene associate with nonobstructive azoospermia // Hum. Mutat. 2010. V. 31. № 7. P. 788–793. https://doi.org/10.1002/humu.21264
- Liu M., Yang Y., Wang Y., Chen S. The mutation c.346-1G>A in SOHLH1 impairs sperm production in the homozygous but not in the heterozygous condi- tion // Hum. Mol. Genet. 2022. V. 31. № 7. P. 1013–1021. https://doi.org/10.1093/hmg/ddab242
- Zhang G., Jiang C., Yang Y. et al. Deficiency of cancer/testis antigen gene CT55 causes male infertility in humans and mice // Cell Death and Differentiation. 2023. V. 30. № 2. P. 500–514. https://doi.org/10.1038/s41418-022-01098-6
- Lv M., Liu C., Ma C. et al. Homozygous mutation in SLO3 leads to severe asthenoteratozoospermia due to acrosome hypoplasia and mitochondrial sheath malformations // Reprod. Biol. Endocrinol. 2022. V. 20. № 1. https://doi.org/10.1186/s12958-021-00880-4
- Stival C., Puga Molina L. Paudel B. et al. Sperm capa- citation and acrosome reaction in mammalian sperm // Adv. Anatomy, Embryol., Cell Biol. 2016. V. 220. P. 93–106. https://doi.org/10.1007/978-3-319-30567-7_5
- Lin Y.H., Wang Y.Y., Lai T.H. et al. Deleterious genetic changes in AGTPBP1 result in teratozoospermia with sperm head and flagella defects // J. Cell Mol. Med. 2024. V. 28. № 2. e18031. https://doi.org/10.1111/jcmm.18031.
- Bai H., Sha Y., Tan Y., Li P. Deleterious variants in TAF7L cause human oligoasthenoteratozoospermia and its impairing histone to protamine exchange inducing reduced in vitro fertilization // Front.Endocrinol. 2023. V. 13. https://doi.org/10.3389/fendo.2022.1099270
- Akinloye O., Gromoll J., Callies C., Nieschlag E. Mutation analysis of the X-chromosome linked, testis-specific TAF7L gene in spermatogenic failure // Andrologia. 2007. V. 39. № 5. P. 190–195. https://doi.org/10.1111/j.1439-0272.2007.00789.x
- Özata D.M., Yu T., Mou H., Gainetdinov I. Evolutionarily conserved pachytene piRNA loci are highly divergent among modern humans // Nat. Ecol. Evol. 2020. V. 4. № 1. P. 156–168. https://doi.org/10.1038/s41559-019-1065-1
- Nagirnaja L., Mørup N., Nielsen J.E., Stakaitis R. Variant PNLDC1, defective piRNA processing, and azoospermia // New England J. Medicine. 2021. V. 385. № 8. P. 707–719. https://doi.org/10.1056/nejmoa2028973
- Wyrwoll M.J., Gaasbeek C.M., Golubickaite I. et al. The piRNA-pathway factor FKBP6 is essential for spermatogenesis but dispensable for control of meiotic LINE-1 expression in humans // Am. J. Hum. Genet. 2022. V. 109. № 10. P. 1850–1866. https://doi.org/10.1016/j.ajhg.2022.09.002
- Kusz-Zamelczyk K., Sajek M., Spik A. et al. Mutations of NANOS1, a human homologue of the Drosophila morphogen, are associated with a lack of germ cells in testes or severe oligo-astheno-teratozoospermia // J. Med. Genet. 2013. V. 50. № 3. P. 187–193. https://doi.org/ 10.1136/jmedgenet-2012-101230
- Arafat M., Kleiman S.E., AbuMadighem A. et al. Pathogenic variations in germ cell nuclear acidic peptidase (GCNA) are associated with human male infertility // Eur. J. Hum. Genet. 2021. V. 29. № 12. P. 1781–1788. https://doi.org/10.1038/s41431-021-00946-2
- Carmell M.A., Dokshin G.A., Skaletsky H. et al. A widely employed germ cell marker is an ancient disordered protein with reproductive functions in diverse eukaryotes // eLife. 2016. V. 5. https://doi.org/10.7554/eLife.19993
- Perry M., Ghosa G. Mechanisms and regulation of DNA-protein crosslink repair during DNA replication by SPRTN protease // Frontiers in Molecular Biosciences. 2022. V. 9: 916697. https://doi.org/10.3389/fmolb.2022.916697
- Wei X., Liu W., Zhu X. et al. Biallelic mutations in KATNAL2 cause male infertility due to oligo-astheno-teratozoospermia // Clin. Genet. 2021. V. 100. № 4. P. 376–385. https://doi.org/10.1111/cge.14009
- Dunleavy J.E.M., Okuda H., O’Connor A.E. et al. Ka- tanin-like 2 (KATNAL2) functions in multiple aspects of haploid male germ cell development in the mouse // PLoS Genet. 2017. V. 13. № 11. https://doi.org/10.1371/journal.pgen.1007078
- Ye J.W., Abbas T., Zhou J.T. et al. Homozygous CCDC146 mutation causes oligoasthenoteratozoospermia in humans and mice // Zool. Res. 2024. V. 45. № 5. P. 1073–1087. https://doi.org/10.24272/j.issn.2095-8137.2024.019
- Zheng H., Gong C., Li J. et al. CCDC157 is essential for sperm differentiation and shows oligoasthenoteratozoospermia-related mutations in men // J. Cell. Mol. Med. 2024. V. 28. № 7. https://doi.org/10.1111/jcmm.18215
- Kumari A., Panda D. Regulation of microtubule stability by centrosomal proteins // IUBMB Life. 2018. V. 70. № 7. P. 602–611. https://doi.org/10.1002/iub.1865
- Sha Y.W., Xu X., Mei L.B. et al. A homozygous CEP135 mutation is associated with multiple morphological abnormalities of the sperm flagella (MMAF) // Gene. 2017. V. 633. P. 48–53. https://doi.org/10.1016/j.gene.2017.08.033
- Sha Y., Wang X., Yuan J. et al. Loss-of-function mutations in centrosomal protein 112 is associated with human acephalic spermatozoa phenotype // Clin. Genet. 2020. V. 97. № 2. P. 321–328. https://doi.org/10.1111/cge.13662
- Zhang X., Zheng R., Liang C. et al. Loss-of-function mutations in CEP78 cause male infertility in humans and mice // Sci. Adv. 2022. V. 8. № 40. https://doi.org/10.1126/sciadv.abn0968
- Zhang X., Huang G., Jiang T. et al. CEP112 coordinates translational regulation of essential fertility genes during spermiogenesis through phase separation in humans and mice // Nat. Commun. 2024. V. 15. № 1. P. 8465–8471. https://doi.org/10.1038/s41467-024-52705-8
- Wang W., Su L., Meng L. et al. Biallelic variants in KCTD19 associated with male factor infertility and oligoasthenoteratozoospermia // Hum. Reprod. 2023. V. 38. № 7. P. 1399–1411. https://doi.org/10.1093/humrep/dead095
- Smaldone G., Pirone L., Balasco N. et al. Cullin 3 re- cognition is not a universal property among KCTD proteins // PLoS One. 2015. V. 10. № 5. https://doi.org/10.1371/journal.pone.0126808
- Huang Z., Chen F., Xie M. et al. The I510V mutation in KLHL10 in a patient with oligoasthenoteratozoospermia // J. Reprod. Dev. 2021. V. 67. № 5. P. 313–318. https://doi.org/10.1262/jrd.2021-063
- Yan W., Ma L., Burns K.H., Matzuk M.M. Haploinsufficiency of kelch-like protein homolog 10 causes infertility in male mice // Proc. Natl. Acad. Sci. USA. 2004. V. 101. № 20. P. 7793–7798. https://doi.org/10.1073/pnas.0308025101
- Hosseini S.H., Sadighi Gilani M.A., Meybodi A.M. et al. The impact of RABL2B gene (rs144944885) on human male infertility in patients with oligoasthenoteratozoospermia and immotile short tail sperm defects // J. Assist. Reprod. Genet. 2017. V. 34. № 4. P. 505–510. https://doi.org/10.1007/s10815-016-0863-5
- Lo J.C., Jamsai D., O'Connor A.E. et al. RAB-like 2 has an essential role in male fertility, sperm intra-flagellar transport, and tail assembly // PLoS Genet. 2012. V. 8. № 10. https://doi.org/10.1371/journal.pgen.1002969
- Liu Y., Li Y., Meng L. et al. Bi-allelic human TEKT3 mutations cause male infertility with oligoasthenoteratozoospermia owing to acrosomal hypoplasia and reduced progressive motility // Hum. Mol. Genet. 2023. V. 32. № 10. P. 1730–1740. https://doi.org/10.1093/hmg/ddad013
- Oiki S., Hiyama E., Gotoh T., Iida H. Localization of Tektin 1 at both acrosome and flagella of mouse and bull spermatozoa // Zoolog. Sci. 2014. V. 31. № 2. P. 101–107. https://doi.org/10.2108/zsj.31.101.
- Takiguchi H., Murayama E., Kaneko T. et al. Characterization and subcellular localization of Tektin 3 in rat spermatozoa // Mol. Reprod. Dev. 2011. V. 78. № 8. P. 611–620. https://doi.org/10.1002/mrd.21352
- Song Y., Guo J., Zhou Y. et al. A loss-of-function variant in ZCWPW1 causes human male infertility with sperm head defect and high DNA fragmentation // Reprod. Health. 2024. V. 21. № 1. P. 18–25. https://doi.org/10.1186/s12978-024-01746-9
- Yuan S., Huang T., Bao Z. et al. The histone modification reader ZCWPW1 promotes double-strand break repair by regulating cross-talk of histone modifications and chromatin accessibility at meiotic hotspots // Genome Biol. 2022. V. 23. № 1. P. 187. https://doi.org/10.1186/s13059-022-02758-z
- Li M., Huang T., Li M.J. et al. The histone modification reader ZCWPW1 is required for meiosis prophase I in male but not in female mice // Sci. Adv. 2019. V. 5. № 8. https://doi.org/10.1126/sciadv.aax1101
- Nasirshalal M., Tahmasebi-Birgani M., Dadfar M. et al. Identification of the PRM1 gene mutations in oligoasthenoteratozoospermic men // Andrologia. 2020. V. 52. № 11. https://doi.org/10.1111/and.13872
- Dehghanpour F., Fesahat F., Miresmaeili S.M. et al. Analysis of PRM1 and PRM2 polymorphisms in Iranian infertile men with idiopathic teratozoospermia // Int. J. Fertil. Steril. 2019. V. 13. № 1. P. 77–82. https://doi.org/10.22074/ijfs.2019.5650
- Bronson R., Mikhailik A., Schwedes J. et al. Detection of candidate nectin gene mutations in infertile men with severe teratospermia // J. Assist. Reprod. Genet. 2017. V. 34. № 10. P. 1295–1302. https://doi.org/10.1007/s10815-017-0985-4
- Inagaki M., Irie K., Ishizaki H. Role of cell adhesion molecule nectin-3 in spermatid development // Genes Cells. 2006. V. 11. № 9. P. 1125–1132. https://doi.org/ 10.1111/j.1365-2443.2006.01006.x
- Mueller S., Rosenquist T.A., Takai Y. Loss of nectin-2 at Sertoli-spermatid junctions leads to male infertility and correlates with severe spermatozoan head and midpiece malformation, impaired binding to the zona pellucida, and oocyte penetration // Biol. Reprod. 2003. V. 69. № 4. P. 1330–1340. https://doi.org/10.1095/biolreprod.102.014670
- Salicioni A.M., Gervasi M.G., Sosnik J. et al. Testis-specific serine kinase protein family in male ferti- lity and as targets for non-hormonal male contraception // Biol. Reprod. 2020. V. 103. № 2. P. 264–274. https://doi.org/10.1093/biolre/ioaa064
- Nayyab S., Gervasi M.G., Tourzani D.A. et al. TSSK3, a novel target for male contraception, is required for spermiogenesis // Mol. Reprod. Dev. 2021. V. 88. № 11. P. 718–730. https://doi.org/10.1002/mrd.23539
- Kadiyska T., Tourtourikov I., Dabchev K. et al. Role of testis-specific serine kinase 1B in undiagnosed male infertility // Mol. Med. Rep. 2022. V. 25. № 6. P. 204–210. https://doi.org/10.3892/mmr.2022.12720
- Wen Y., Wang X., Zheng R. et al. Sequencing of the ZMYND15 gene in a cohort of infertile Chinese men reveals novel mutations in patients with teratozoospermia // J. Med. Genet. 2023. V. 60. № 4. P. 380–390. https://doi.org/10.1136/jmg-2022-108727
- Kherraf Z.E., Cazin C., Lestrade F. et al. From azoospermia to macrozoospermia, a phenotypic continuum due to mutations in the ZMYND15 gene // Asian J. Androl. 2022. V. 24. № 3. P. 243–247. https://doi.org/10.4103/aja202194
- Chen D., Fan G., Xu Y. et al. A novel homozygous mutation in the DNAAF3 gene leads to severe asthenozoospermia and teratospermia // J. Cell. Mol. Med. 2024. V. 28. № 18: e70092. https://doi.org/10.1111/jcmm.70092
- Liu M., Li J., Jiang C. et al. A novel homozygous mutation in DNAJB13-a gene associated with the sperm axoneme-leads to teratozoospermia // J. Assist. Reprod. Genet. 2022. V. 39. № 3. P. 757–764. https://doi.org/10.1007/s10815-022-02431-1
- Li W., Liu G. DNAJB13, a type II HSP40 family member, localizes to the spermatids and spermatozoa during mouse spermatogenesis // BMC Dev. Biol. 2014. V. 14: 38. https://doi.org/10.1186/s12861-014-0038-5
- Zhang Y.T., Shen G., Zhuo L.C. et al. Novel variations in TENT5D lead to teratozoospermia in infertile patients // Andrology. 2024. V. 12. № 6. P. 1336–1346. https://doi.org/10.1111/andr.13589
- Cong J., Yang Y., Wang X. et al. Deficiency of X-linked TENT5D causes male infertility by disrupting the mRNA stability during spermatogenesis // Cell. Discov. 2022. V. 8. № 1: 23. https://doi.org/10.1038/s41421-021-00369-9
- Barati E., Nikzad H., Karimian M. Oxidative stress and male infertility: Current knowledge of pathophysiology and role of antioxidant therapy in disease management // Cell. Mol. Life Sci. 2020. V. 77. № 1. P. 93–113. https://doi.org/10.1007/s00018-019-03253-8
- Tavilani H., Fattahi A., Esfahani M. et al. Genotype and phenotype frequencies of paraoxonase 1 in fertile and infertile men // Syst. Biol. Reprod Med. 2014. V. 60. № 6. P. 361–366. https://doi.org/10.3109/19396368.2014.960624
- Fallah F., Colagar A.H., Saleh H.A., Ranjbar M. Variation of the genes encoding antioxidant enzymes SOD2 (rs4880), GPX1 (rs1050450), and CAT (rs1001179) and susceptibility to male infertility: A genetic association study and in silico analysis // Environ Sci. Pollut. Res. Int. 2023. V. 30. № 36. P. 86412–86424. https://doi.org/10.1007/s11356-023-28474-0
- Miyata H., Shimada K., Kaneda Y., Ikawa M. Development of functional spermatozoa in mammalian spermiogenesis // Development. 2024. V. 151. № 14. https://doi.org/10.1242/dev.202838
- Han C. Gene expression programs in mammalian spermatogenesis // Development. 2024. V. 151. № 8. https://doi.org/10.1242/dev.202033
- Li L., Sha Y., Wang X. et al. Whole-exome sequencing identified a homozygous BRDT mutation in a patient with acephalic spermatozoa // Oncotarget. 2017. V. 8. № 12. P. 19914–19922. https://doi.org/10.18632/oncotarget.15251
- Joshi M., Sethi S., Mehta P. et al. Small RNAs, spermatogenesis, and male infertility: A decade of retrospect // Reprod. Biol. Endocrinol. 2023. V. 21. № 1. P. 106. https://doi.org/10.1186/s12958-023-01155-w
- Lim S.L., Qu Z.P., Kortschak R.D. et al. HENMT1 and piRNA stability are required for adult male germ cell transposon repression and to define the spermatogenic program in the mouse // PLoS Genet. 2015. V. 11. № 10. https://doi.org/10.1371/journal.pgen.1005620
- Dai P., Wang X., Gou L.T. et al. A translation-activating function of MIWI/piRNA during mouse spermiogenesis // Cell. 2019. V. 179. № 7. P. 1566–1581. https://doi.org/10.1016/j.cell.2019.11.022
- Hao S.L., Ni F.D., Yang W.X. The dynamics and regulation of chromatin remodeling during spermiogenesis // Gene. 2019. V. 706. P. 201–210. https://doi.org/10.1016/j.gene.2019.05.027
- Zini A., Phillips S., Courchesne A. et al. Sperm head morphology is related to high deoxyribonucleic acid stainability assessed by sperm chromatin structure assay // Fertil. Steril. 2009. V. 91. № 6. P. 2495–2500. https://doi.org/10.1016/j.fertnstert.2008.03.032
- Franken D.R. How accurate is sperm morphology as an indicator of sperm function? // Andrologia. 2015. V. 47. № 6. P. 720–723. https://doi.org/10.1111/and.12324
- Gao J., Yuan R., Yang S. et al. Age-related changes in human conventional semen parameters and sperm chromatin structure assay-defined sperm DNA/chromatin integrity // Reprod. Biomed. Online. 2021. V. 42. № 5. P. 973–982. https://doi.org/10.1016/j.rbmo.2021.02.006
- Lu J.C., Jing J., Chen L. et al. Analysis of human sperm DNA fragmentation index (DFI) related factors: A report of 1010 subfertile men in China // Reprod. Biol. Endocrinol. 2018. V. 16. № 1. P. 23. https://doi.org/ 10.1186/s12958-018-0345-y
- Kleshchev M., Osadchuk A., Osadchuk L. Impaired semen quality, an increase of sperm morphological defects and DNA fragmentation associated with environmental pollution in urban population of young men from Western Siberia, Russia // PLoS One. 2021. V. 16. № 10. https://doi.org/10.1371/journal.pone.0258900
- Torregrosa N., Domínguez-Fandos D., Camejo M.I. et al. Protamine 2 precursors, protamine 1/protamine 2 ratio, DNA integrity and other sperm parameters in infertile patients // Hum. Reprod. 2006. V. 21. № 8. P. 2084–2089. https://doi.org/10.1093/humrep/del114
- Beygi Z., Forouhari S., Mahmoudi E. et al. Role of oxidative stress and antioxidant supplementation in male fertility // Curr. Mol. Med. 2021. V. 21. № 4. P. 265–282. https://doi.org/10.2174/1566524020999200831123553
- Oumaima A., Tesnim A., Zohra H. et al. Investigation on the origin of sperm morphological defects: Oxidative attacks, chromatin immaturity, and DNA fragmentation // Environ. Sci. Pollut. Res. Int. 2018. V. 25. № 14. P. 13775–13786. https://doi.org/10.1007/s11356-018-1417-4
- Li K.P., Yang X.S., Wu T. The effect of antioxidants on sperm quality parameters and pregnancy rates for idiopathic male infertility: A network meta-analysis of randomized controlled trials // Front. Endocrinol. (Lausanne). 2022. V. 13. https://doi.org/10.3389/fendo.2022.810242
- Su L., Qu H., Cao Y., et al. Effect of antioxidants on sperm quality parameters in subfertile men: A systematic review and network meta-analysis of randomized controlled trials // Adv. Nutr. 2022. V. 13. № 2. P. 586–594. https://doi.org/10.1093/advances/nmab127
补充文件

