Genetic Factors of Polymorphic Teratozoospermia Development in Humans

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Nonspecific (polymorphic) teratozoospermia is a common male fertility, when the proportion of morphologically normal spermatozoa is lower than the reference values, while several types of morphological abnormalities of spermatozoa in different proportions are observed in the ejaculate sample. Polymorphic teratozoospermia is known to be resuled from both negative environmental and lifestyle factors, as well as the presence of pathogenic variants of certain genes. However, little attention is paid to the study of the genetic causes of polymorphic teratozoospermia. In this review, for the first time, as a result of an analysis of the published literature, as well as information from the databases Malacards, OMIM, KEGG, CTD, and DisGeNET, the evidence on 85 pathogenic variants of 51 genes related to the development of polymorphic teratozoospermia in humans has been obtained and systematized. According to the functional annotation of genes and the analysis of published literature, the products of these genes are involved in the organization of the components of the cytoskeleton of the spermatid – acroplaxome and perinuclear theca, which ensure the formation of the acrosome and the interaction of the acrosome vesicle with the nucleus, as well as intracellular transport of molecules, regulation of protein expression and degradation, and chromatin rearrangement during spermiogenesis. In addition, pathogenic variants of some genes lead to a decrease in the effectiveness of the natural antioxidant protection of cells and, as a result, the manifestation of teratozoospermia. This information can be useful for the diagnosis and choice of treatment tactics for polymorphic teratozoospermia, which can be caused by both genetic causes and the influence of negative environmental and lifestyle factors.

Авторлар туралы

M. Kleshchev

Federal Research Center Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: max82cll@bionet.nsc.ru
Novosibirsk, 630090 Russia

A. Osadchuk

Federal Research Center Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences

Email: max82cll@bionet.nsc.ru
Novosibirsk, 630090 Russia

L. Osadchuk

Federal Research Center Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences

Email: max82cll@bionet.nsc.ru
Novosibirsk, 630090 Russia

Әдебиет тізімі

  1. World Health Organization. WHO laboratory manual for the examination and processing of human semen. 6th edn. WorldHealth Organization: Geneva. 2021.
  2. World Health Organization. WHO laboratory manual for the examination and processing of human semen. 6th edn. World Health Organization: Geneva. 2010.
  3. Atmoko W., Savira M., Shah R. et al. Isolated teratozoospermia: revisiting its relevance in male infertility: А narrative review // Transl. Androl. Urol. 2024. V. 13. № 2. P. 260–273. https://doi.org/10.21037/tau-23-397
  4. Krausz C., Riera-Escamilla A. Genetics of male inferti- lity // Nat. Rev. Urol. 2018. V. 15. № 6. P. 369–384. https://doi.org/10.1038/s41585-018-0003-3
  5. de Braekeleer M., Nguyen M.H., Morel F., Perrin A. Genetic aspects of monomorphic teratozoospermia: А review // J. Assisted Reprod. and Genet. 2015. V. 32. № 4. P. 615–623. https://doi.org/10.1007/s10815-015-0433-2
  6. Crafa A., Condorelli R.A., La Vignera S. et al. Globozoospermia: А case report and systematic review of li- terature // The World J. Men's Health. 2023. V. 41. № 1. P. 49–80. https://doi.org/10.5534/wjmh.220020
  7. Moreno R.D. Human globozoospermia-related genes and their role in acrosome biogenesis // Wires Me- chanisms Disease. 2023. V. 15. № 2. https://doi.org/10.1002/wsbm.1589
  8. Kierszenbaum A.L., Tres L.L. The acrosome-acroplaxome-manchette complex and the shaping of the spermatid head // Arch. Histol. And Cytol. 2004. V. 67. № 4. P. 271–284. https://doi.org/10.1679/aohc.67.271
  9. Ortega V., Oyanedel J., Fleck-Lavergne D. et al. Macro- zoospermia associated with mutations of AURKC gene: First case report in Latin America and literature review // Revista Intern. De Androl. 2020. V. 18. № 4. P. 159–163. https://doi.org/10.1016/j.androl.2019.04.004
  10. Beurois J., Cazin C., Kherraf Z.E. et al. Genetics of teratozoospermia: Back to the head // Best Practice & Res. Clin. Endocrinol. & Metabolism. 2020. V. 34. № 6. https://doi.org/10.1016/j.beem.2020.101473
  11. Touré A., Martinez G., Kherraf Z.E. et al. The genetic architecture of morphological abnormalities of the sperm tail // Human Genet. 2021. V. 140. № 1. P. 21–42. https://doi.org/10.1007/s00439-020-02113-x
  12. Ammar O., Mehdi M., Muratori M. Teratozoospermia: Its association with sperm DNA defects, apoptotic alterations, and oxidative stress // Andrology. 2020. V. 8. № 5. P. 1095–1106. https://doi.org/10.1111/andr.12778
  13. Braham A., Ghedir H., Zidi I. et al. Nuclear sperm qua- lity in total polymorphic teratozoospermia and its impact on intracytoplasmic sperm injection outcome // Andrologia. 2019. V. 51. № 5. https://doi.org/10.1111/and.13252
  14. Vicari E., de Palma A., Burrello N. et al. Absolute polymorphic teratozoospermia in patients with oligo-asthenozoospermia is associated with an elevated sperm aneuploidy rate // J. Andrology. 2003. V. 24. № 4. P. 598–603. https://doi.org/10.1002/j.1939-4640.2003.tb02711.x
  15. Chemes H.E. Phenotypic varieties of sperm pathology: Genetic abnormalities or environmental influences can result in different patterns of abnormal spermatozoa //Animal Reprod. Sci. 2018. V. 194. P. 41–56. https://doi.org/10.1016/j.anireprosci.2018.04.074
  16. Shabtaie S.A., Gerkowicz S.A., Kohn T.P., Ramasa- my R. Role of abnormal sperm morphology in predicting pregnancy outcomes // Curr. Urol. Rep. 2016. V. 17. № 9. P. 67–78. https://doi.org/10.1007/s11934-016-0623-1
  17. Kleshchev M.A., Osadchuk A.V., Osadchuk L.V. Genetic variants causing teratozoospermia in humans // Russian Journal оf Genetics. 2024. V. 60. № 11. P. 3–20.
  18. Ma Y., Xie N., Xie D., Sun L. et al. A novel homozygous FBXO43 mutation associated with male infertility and teratozoospermia in a consanguineous Chinese family // Fertility And Sterility. 2019. V. 111. № 5. P. 909–917. https://doi.org/10.1016/j.fertnstert.2019.01.007
  19. Zhao S., Meng L.L., Du Z.L., Tan Y.Q. et al. A novel loss-of-function variant in PNLDC1 inducing oligo-astheno-teratozoospermia and male infertility // Asian J. Andrology. 2023. V. 25. № 5. P. 643–645. https://doi.org/10.4103/aja20233
  20. Demenkov P.S., Ivanisenko T. Kolchanov N.A., Ivani- senko V.A. ANDVisio: A new tool for graphic visualization and analysis of literature mined associative gene networks in the ANDSystem // In Silico Biol. 2011. V. 11. № 3. P. 149–161. https://doi.org/10.3233/ISB-2012-0449
  21. Wang Y., Chen G., Tang Z. et al. Loss-of-function mutations in IQCN cause male infertility in humans and mice owing to total fertilization failure // Mol. Human Reprod. 2023. V. 29. № 7. https://doi.org/10.1093/molehr/gaad018
  22. Li Q., Wang Y., Zheng W. et al. Biallelic variants in IQCN cause sperm flagellar assembly defects and male infertility // Hum. Reprod. 2023. V. 38. № 7. P. 1390–1398. https://doi.org/10.1093/humrep/dead079
  23. Dai J., Li Q., Zhou Q., Zhang S. IQCN disruption causes fertilization failure and male infertility due to manchette assembly defect // EMBO Mol. Medicine. 2022. V. 14. № 12. https://doi.org/10.15252/emmm.202216501
  24. Teves M.E., Roldan E.R.S. Sperm bauplan and function and underlying processes of sperm formation and selection // Physiol. Reviews. 2022. V. 102. № 1. P. 7–60. https://doi.org/10.1152/physrev.00009.2020
  25. Gopinathan L., Szmyd R., Low D. et al. Emi2 is essential for mouse spermatogenesis // Cell Reports. 2017. V. 20. № 3. P. 697–708. https://doi.org/10.1016/j.celrep.2017.06.033
  26. Arafat M., Harlev A., Har-Vardi I. et al. Mutation in CATIP (C2orf62) causes oligoteratoasthenozoospermia by affecting actin dynamics // J. Med. Genetics. 2021. V. 58. № 2. P. 106–115. https://doi.org/10.1136/jmedgenet-2019-106825
  27. Wang X., Sha Y., Wang W. et al. Novel IFT140 variants cause spermatogenic dysfunction in humans // Mol. Genet. and Genomic Med. 2019. V. 7. № 9. https://doi.org/10.1002/mgg3.920
  28. Zhang Y., Liu H., Li W. et al. Intraflagellar transporter protein 140 (IFT140), a component of IFT-A complex, is essential for male fertility and spermiogenesis in mice // Cytoskeleton. 2018. V. 75. № 2. P. 70–84. https://doi.org/10.1002/cm.21427
  29. Lin Y.H., Wang Y.Y., Chen H.I. et al. SEPTIN12 genetic variants confer susceptibility to teratozoospermia // PLoS one. 2012. V. 7. № 3. https://doi.org/10.1371/journal.pone.0034011
  30. Özkara G., Ersoy Tunali N. SEPTIN12 c.474 G>A polymorphism as a risk factor in teratozoospermic patients // Mol. Biol. Reports. 2021. V. 48. № 5. P. 4073–4081. https://doi.org/10.1007/s11033-021-06417-7
  31. Lin Y.H., Lin Y.M., Wang Y.Y. The expression level of Septin12 is critical for spermiogenesis // Am. J. Pathology. 2009. V. 174. № 5. P. 1857–1868. https://doi.org/10.2353/ajpath.2009.080955
  32. Lin Y.H., Chou C.K., Hung Y.C., Yu I.S. SEPT12 deficiency causes sperm nucleus damage and developmental arrest of preimplantation embryos // Fertil. Steril. 2011. V. 95. № 1. P. 363–365. https://doi.org/10.1016/j.fertnstert.2010.07.1064
  33. Iwamori T., Iwamori N., Matsumoto M. et al. Identification of KIAA1210 as a novel X-chromosome-linked protein that localizes to the acrosome and associates with the ectoplasmic specialization in testes // Biol. Reprod. 2017. V. 96. № 2. P. 469–477. https://doi.org/10.1095/biolreprod.116.145458
  34. Li Y., Wang Y., Wen Y. et al. Whole-exome sequencing of a cohort of infertile men reveals novel causative genes in teratozoospermia that are chiefly related to sperm head defects // Hum. Reprod. 2022. V. 37. № 1. P. 152–177. https://doi.org/10.1093/humrep/deab229
  35. Oko R., Sutovsky P. Biogenesis of sperm perinuclear theca and its role in sperm functional competence and fertilization // J. Reprod. Immunol. 2009. V. 83. № 1–2. P. 2–7. https://doi.org/10.1016/j.jri.2009.05.008
  36. Toshimori K., Ito C. Formation and organization of the mammalian sperm head // Arch. Histol. Cytol. 2003. V. 66. № 5. P. 383–396. https://doi.org/10.1679/aohc.66.383
  37. Wei Y.L., Yang W.X. The acroframosome-acroplaxome-manchette axis may function in sperm head shaping and male fertility // Gene. 2018. № 660. P. 28–40. https://doi.org/10.1016/j.gene.2018.03.059
  38. Fan Y., Huang C., Chen J. et al. Mutations in CCIN cause teratozoospermia and male infertility // Sci. Bulletin. 2022. V. 67. № 20. P. 2112–2123. https://doi.org/10.1016/j.scib.2022.09.026
  39. He J., Liu Q., Wang W. et al. Novel homozygous variant of CCIN causes male infertility owing to the abnormal sperm head with a nuclear subsidence phenotype // Clin. Genet. 2023. V. 103. № 4. P. 495–497. https://doi.org/10.1111/cge.14281
  40. Dai J., Zhang T., Guo J. et al. Homozygous pathogenic variants in ACTL9 cause fertilization fai-lure and male infertility in humans and mice // Am. J. Hum. Genet. 2021. V. 108. № 3. P. 469–481. https://doi.org/10.1016/j.ajhg.2021.02.004
  41. Kierszenbaum A.L., Rivkin E., Tres L.L. Molecular biology of sperm head shaping // Soc. Reprod. аnd Fertility Suppl. 2007. V. 65. P. 33–43.
  42. Zhou X., Xi Q., Jia W. et al. A novel homozygous mutation in ACTL7A leads to male infertility // Mol. Genet. Genomics. 2023. V. 298. № 2. P. 353–360. https://doi.org/10.1007/s00438-022-01985-0
  43. Zhang Y., Tang J., Wang X. et al. Loss of ACTL7A causes small head sperm by defective acrosome-acroplaxome-manchette complex // Reproduct. Biol. Endocrinol.: Rb&E. 2023. V. 21. № 1. P. 82. https://doi.org/10.1186/s12958-023-01130-5
  44. Arora M., Mehta P., Sethi S. et al. Genetic etiological spectrum of sperm morphological abnormalities // J. Assist. Reprod. Genet. 2024. V. 41. № 11. P. 2877–2929. https://doi.org/10.1007/s10815-024-03274-8.
  45. Wang J., Zhang J., Sun X. et al. Novel bi-allelic variants in ACTL7A are associated with male infertility and total fertilization failure // Hum. Reprod. 2021. V. 36. № 12. P. 3161–3169. https://doi.org/10.1093/humrep/deab228
  46. Xin A., Qu R., Chen G., Zhang L. et al. Disruption in ACTL7A causes acrosomal ultrastructural defects in human and mouse sperm as a novel male factor indu- cing early embryonic arrest // Sci. Adv. 2020. V. 6. № 35. eaaz4796. https://doi.org/10.1126/sciadv.aaz4796
  47. Heydari R., Seresht-Ahmadi M., Mirshahvaladi S. et al. KIF3B gene silent variant lea-ding to sperm morpho- logy and motility defects and male infertility // Biol. Reprod. 2022. V. 106. № 4. P. 766–774. https://doi.org/10.1093/biolre/ioab226
  48. Liu C., Shen Y., Shen Q., Zhang W. Novel mutations in X-linked, uSP26-induced asthenoteratozoospermia and male infertility // Cells. 2021. V. 10. № 7. https://doi.org/10.3390/cells10071594
  49. Liu M., Jiang C., Zhang X., Zhang G. PRSS55 is a novel potential causative gene for human male infertility // Reprod. Biomed. Online. 2022. V. 45. № 3. P. 553–562. https://doi.org/10.1016/j.rbmo.2022.05.016
  50. Zhu F., Li W., Zhou X. et al. PRSS55 plays an important role in the structural differentiation and energy metabolism of sperm and is required for male fertility in mice // J. Cell. Mol. Med. 2021. V. 25. № 4. P. 2040–2051. https://doi.org/10.1111/jcmm.16116
  51. Choi Y., Jeon S., Choi M. et al. Mutations in SOHLH1 gene associate with nonobstructive azoospermia // Hum. Mutat. 2010. V. 31. № 7. P. 788–793. https://doi.org/10.1002/humu.21264
  52. Liu M., Yang Y., Wang Y., Chen S. The mutation c.346-1G>A in SOHLH1 impairs sperm production in the homozygous but not in the heterozygous condi- tion // Hum. Mol. Genet. 2022. V. 31. № 7. P. 1013–1021. https://doi.org/10.1093/hmg/ddab242
  53. Zhang G., Jiang C., Yang Y. et al. Deficiency of cancer/testis antigen gene CT55 causes male infertility in humans and mice // Cell Death and Differentiation. 2023. V. 30. № 2. P. 500–514. https://doi.org/10.1038/s41418-022-01098-6
  54. Lv M., Liu C., Ma C. et al. Homozygous mutation in SLO3 leads to severe asthenoteratozoospermia due to acrosome hypoplasia and mitochondrial sheath malformations // Reprod. Biol. Endocrinol. 2022. V. 20. № 1. https://doi.org/10.1186/s12958-021-00880-4
  55. Stival C., Puga Molina L. Paudel B. et al. Sperm capa- citation and acrosome reaction in mammalian sperm // Adv. Anatomy, Embryol., Cell Biol. 2016. V. 220. P. 93–106. https://doi.org/10.1007/978-3-319-30567-7_5
  56. Lin Y.H., Wang Y.Y., Lai T.H. et al. Deleterious genetic changes in AGTPBP1 result in teratozoospermia with sperm head and flagella defects // J. Cell Mol. Med. 2024. V. 28. № 2. e18031. https://doi.org/10.1111/jcmm.18031.
  57. Bai H., Sha Y., Tan Y., Li P. Deleterious variants in TAF7L cause human oligoasthenoteratozoospermia and its impairing histone to protamine exchange inducing reduced in vitro fertilization // Front.Endocrinol. 2023. V. 13. https://doi.org/10.3389/fendo.2022.1099270
  58. Akinloye O., Gromoll J., Callies C., Nieschlag E. Mutation analysis of the X-chromosome linked, testis-specific TAF7L gene in spermatogenic failure // Andrologia. 2007. V. 39. № 5. P. 190–195. https://doi.org/10.1111/j.1439-0272.2007.00789.x
  59. Özata D.M., Yu T., Mou H., Gainetdinov I. Evolutionarily conserved pachytene piRNA loci are highly divergent among modern humans // Nat. Ecol. Evol. 2020. V. 4. № 1. P. 156–168. https://doi.org/10.1038/s41559-019-1065-1
  60. Nagirnaja L., Mørup N., Nielsen J.E., Stakaitis R. Variant PNLDC1, defective piRNA processing, and azoospermia // New England J. Medicine. 2021. V. 385. № 8. P. 707–719. https://doi.org/10.1056/nejmoa2028973
  61. Wyrwoll M.J., Gaasbeek C.M., Golubickaite I. et al. The piRNA-pathway factor FKBP6 is essential for spermatogenesis but dispensable for control of meiotic LINE-1 expression in humans // Am. J. Hum. Genet. 2022. V. 109. № 10. P. 1850–1866. https://doi.org/10.1016/j.ajhg.2022.09.002
  62. Kusz-Zamelczyk K., Sajek M., Spik A. et al. Mutations of NANOS1, a human homologue of the Drosophila morphogen, are associated with a lack of germ cells in testes or severe oligo-astheno-teratozoospermia // J. Med. Genet. 2013. V. 50. № 3. P. 187–193. https://doi.org/ 10.1136/jmedgenet-2012-101230
  63. Arafat M., Kleiman S.E., AbuMadighem A. et al. Pathogenic variations in germ cell nuclear acidic peptidase (GCNA) are associated with human male infertility // Eur. J. Hum. Genet. 2021. V. 29. № 12. P. 1781–1788. https://doi.org/10.1038/s41431-021-00946-2
  64. Carmell M.A., Dokshin G.A., Skaletsky H. et al. A widely employed germ cell marker is an ancient disordered protein with reproductive functions in diverse eukaryotes // eLife. 2016. V. 5. https://doi.org/10.7554/eLife.19993
  65. Perry M., Ghosa G. Mechanisms and regulation of DNA-protein crosslink repair during DNA replication by SPRTN protease // Frontiers in Molecular Biosciences. 2022. V. 9: 916697. https://doi.org/10.3389/fmolb.2022.916697
  66. Wei X., Liu W., Zhu X. et al. Biallelic mutations in KATNAL2 cause male infertility due to oligo-astheno-teratozoospermia // Clin. Genet. 2021. V. 100. № 4. P. 376–385. https://doi.org/10.1111/cge.14009
  67. Dunleavy J.E.M., Okuda H., O’Connor A.E. et al. Ka- tanin-like 2 (KATNAL2) functions in multiple aspects of haploid male germ cell development in the mouse // PLoS Genet. 2017. V. 13. № 11. https://doi.org/10.1371/journal.pgen.1007078
  68. Ye J.W., Abbas T., Zhou J.T. et al. Homozygous CCDC146 mutation causes oligoasthenoteratozoospermia in humans and mice // Zool. Res. 2024. V. 45. № 5. P. 1073–1087. https://doi.org/10.24272/j.issn.2095-8137.2024.019
  69. Zheng H., Gong C., Li J. et al. CCDC157 is essential for sperm differentiation and shows oligoasthenoteratozoospermia-related mutations in men // J. Cell. Mol. Med. 2024. V. 28. № 7. https://doi.org/10.1111/jcmm.18215
  70. Kumari A., Panda D. Regulation of microtubule stability by centrosomal proteins // IUBMB Life. 2018. V. 70. № 7. P. 602–611. https://doi.org/10.1002/iub.1865
  71. Sha Y.W., Xu X., Mei L.B. et al. A homozygous CEP135 mutation is associated with multiple morphological abnormalities of the sperm flagella (MMAF) // Gene. 2017. V. 633. P. 48–53. https://doi.org/10.1016/j.gene.2017.08.033
  72. Sha Y., Wang X., Yuan J. et al. Loss-of-function mutations in centrosomal protein 112 is associated with human acephalic spermatozoa phenotype // Clin. Genet. 2020. V. 97. № 2. P. 321–328. https://doi.org/10.1111/cge.13662
  73. Zhang X., Zheng R., Liang C. et al. Loss-of-function mutations in CEP78 cause male infertility in humans and mice // Sci. Adv. 2022. V. 8. № 40. https://doi.org/10.1126/sciadv.abn0968
  74. Zhang X., Huang G., Jiang T. et al. CEP112 coordinates translational regulation of essential fertility genes during spermiogenesis through phase separation in humans and mice // Nat. Commun. 2024. V. 15. № 1. P. 8465–8471. https://doi.org/10.1038/s41467-024-52705-8
  75. Wang W., Su L., Meng L. et al. Biallelic variants in KCTD19 associated with male factor infertility and oligoasthenoteratozoospermia // Hum. Reprod. 2023. V. 38. № 7. P. 1399–1411. https://doi.org/10.1093/humrep/dead095
  76. Smaldone G., Pirone L., Balasco N. et al. Cullin 3 re- cognition is not a universal property among KCTD proteins // PLoS One. 2015. V. 10. № 5. https://doi.org/10.1371/journal.pone.0126808
  77. Huang Z., Chen F., Xie M. et al. The I510V mutation in KLHL10 in a patient with oligoasthenoteratozoospermia // J. Reprod. Dev. 2021. V. 67. № 5. P. 313–318. https://doi.org/10.1262/jrd.2021-063
  78. Yan W., Ma L., Burns K.H., Matzuk M.M. Haploinsufficiency of kelch-like protein homolog 10 causes infertility in male mice // Proc. Natl. Acad. Sci. USA. 2004. V. 101. № 20. P. 7793–7798. https://doi.org/10.1073/pnas.0308025101
  79. Hosseini S.H., Sadighi Gilani M.A., Meybodi A.M. et al. The impact of RABL2B gene (rs144944885) on human male infertility in patients with oligoasthenoteratozoospermia and immotile short tail sperm defects // J. Assist. Reprod. Genet. 2017. V. 34. № 4. P. 505–510. https://doi.org/10.1007/s10815-016-0863-5
  80. Lo J.C., Jamsai D., O'Connor A.E. et al. RAB-like 2 has an essential role in male fertility, sperm intra-flagellar transport, and tail assembly // PLoS Genet. 2012. V. 8. № 10. https://doi.org/10.1371/journal.pgen.1002969
  81. Liu Y., Li Y., Meng L. et al. Bi-allelic human TEKT3 mutations cause male infertility with oligoasthenoteratozoospermia owing to acrosomal hypoplasia and reduced progressive motility // Hum. Mol. Genet. 2023. V. 32. № 10. P. 1730–1740. https://doi.org/10.1093/hmg/ddad013
  82. Oiki S., Hiyama E., Gotoh T., Iida H. Localization of Tektin 1 at both acrosome and flagella of mouse and bull spermatozoa // Zoolog. Sci. 2014. V. 31. № 2. P. 101–107. https://doi.org/10.2108/zsj.31.101.
  83. Takiguchi H., Murayama E., Kaneko T. et al. Characterization and subcellular localization of Tektin 3 in rat spermatozoa // Mol. Reprod. Dev. 2011. V. 78. № 8. P. 611–620. https://doi.org/10.1002/mrd.21352
  84. Song Y., Guo J., Zhou Y. et al. A loss-of-function variant in ZCWPW1 causes human male infertility with sperm head defect and high DNA fragmentation // Reprod. Health. 2024. V. 21. № 1. P. 18–25. https://doi.org/10.1186/s12978-024-01746-9
  85. Yuan S., Huang T., Bao Z. et al. The histone modification reader ZCWPW1 promotes double-strand break repair by regulating cross-talk of histone modifications and chromatin accessibility at meiotic hotspots // Genome Biol. 2022. V. 23. № 1. P. 187. https://doi.org/10.1186/s13059-022-02758-z
  86. Li M., Huang T., Li M.J. et al. The histone modification reader ZCWPW1 is required for meiosis prophase I in male but not in female mice // Sci. Adv. 2019. V. 5. № 8. https://doi.org/10.1126/sciadv.aax1101
  87. Nasirshalal M., Tahmasebi-Birgani M., Dadfar M. et al. Identification of the PRM1 gene mutations in oligoasthenoteratozoospermic men // Andrologia. 2020. V. 52. № 11. https://doi.org/10.1111/and.13872
  88. Dehghanpour F., Fesahat F., Miresmaeili S.M. et al. Analysis of PRM1 and PRM2 polymorphisms in Iranian infertile men with idiopathic teratozoospermia // Int. J. Fertil. Steril. 2019. V. 13. № 1. P. 77–82. https://doi.org/10.22074/ijfs.2019.5650
  89. Bronson R., Mikhailik A., Schwedes J. et al. Detection of candidate nectin gene mutations in infertile men with severe teratospermia // J. Assist. Reprod. Genet. 2017. V. 34. № 10. P. 1295–1302. https://doi.org/10.1007/s10815-017-0985-4
  90. Inagaki M., Irie K., Ishizaki H. Role of cell adhesion molecule nectin-3 in spermatid development // Genes Cells. 2006. V. 11. № 9. P. 1125–1132. https://doi.org/ 10.1111/j.1365-2443.2006.01006.x
  91. Mueller S., Rosenquist T.A., Takai Y. Loss of nectin-2 at Sertoli-spermatid junctions leads to male infertility and correlates with severe spermatozoan head and midpiece malformation, impaired binding to the zona pellucida, and oocyte penetration // Biol. Reprod. 2003. V. 69. № 4. P. 1330–1340. https://doi.org/10.1095/biolreprod.102.014670
  92. Salicioni A.M., Gervasi M.G., Sosnik J. et al. Testis-specific serine kinase protein family in male ferti- lity and as targets for non-hormonal male contraception // Biol. Reprod. 2020. V. 103. № 2. P. 264–274. https://doi.org/10.1093/biolre/ioaa064
  93. Nayyab S., Gervasi M.G., Tourzani D.A. et al. TSSK3, a novel target for male contraception, is required for spermiogenesis // Mol. Reprod. Dev. 2021. V. 88. № 11. P. 718–730. https://doi.org/10.1002/mrd.23539
  94. Kadiyska T., Tourtourikov I., Dabchev K. et al. Role of testis-specific serine kinase 1B in undiagnosed male infertility // Mol. Med. Rep. 2022. V. 25. № 6. P. 204–210. https://doi.org/10.3892/mmr.2022.12720
  95. Wen Y., Wang X., Zheng R. et al. Sequencing of the ZMYND15 gene in a cohort of infertile Chinese men reveals novel mutations in patients with teratozoospermia // J. Med. Genet. 2023. V. 60. № 4. P. 380–390. https://doi.org/10.1136/jmg-2022-108727
  96. Kherraf Z.E., Cazin C., Lestrade F. et al. From azoospermia to macrozoospermia, a phenotypic continuum due to mutations in the ZMYND15 gene // Asian J. Androl. 2022. V. 24. № 3. P. 243–247. https://doi.org/10.4103/aja202194
  97. Chen D., Fan G., Xu Y. et al. A novel homozygous mutation in the DNAAF3 gene leads to severe asthenozoospermia and teratospermia // J. Cell. Mol. Med. 2024. V. 28. № 18: e70092. https://doi.org/10.1111/jcmm.70092
  98. Liu M., Li J., Jiang C. et al. A novel homozygous mutation in DNAJB13-a gene associated with the sperm axoneme-leads to teratozoospermia // J. Assist. Reprod. Genet. 2022. V. 39. № 3. P. 757–764. https://doi.org/10.1007/s10815-022-02431-1
  99. Li W., Liu G. DNAJB13, a type II HSP40 family member, localizes to the spermatids and spermatozoa during mouse spermatogenesis // BMC Dev. Biol. 2014. V. 14: 38. https://doi.org/10.1186/s12861-014-0038-5
  100. Zhang Y.T., Shen G., Zhuo L.C. et al. Novel variations in TENT5D lead to teratozoospermia in infertile patients // Andrology. 2024. V. 12. № 6. P. 1336–1346. https://doi.org/10.1111/andr.13589
  101. Cong J., Yang Y., Wang X. et al. Deficiency of X-linked TENT5D causes male infertility by disrupting the mRNA stability during spermatogenesis // Cell. Discov. 2022. V. 8. № 1: 23. https://doi.org/10.1038/s41421-021-00369-9
  102. Barati E., Nikzad H., Karimian M. Oxidative stress and male infertility: Current knowledge of pathophysiology and role of antioxidant therapy in disease management // Cell. Mol. Life Sci. 2020. V. 77. № 1. P. 93–113. https://doi.org/10.1007/s00018-019-03253-8
  103. Tavilani H., Fattahi A., Esfahani M. et al. Genotype and phenotype frequencies of paraoxonase 1 in fertile and infertile men // Syst. Biol. Reprod Med. 2014. V. 60. № 6. P. 361–366. https://doi.org/10.3109/19396368.2014.960624
  104. Fallah F., Colagar A.H., Saleh H.A., Ranjbar M. Variation of the genes encoding antioxidant enzymes SOD2 (rs4880), GPX1 (rs1050450), and CAT (rs1001179) and susceptibility to male infertility: A genetic association study and in silico analysis // Environ Sci. Pollut. Res. Int. 2023. V. 30. № 36. P. 86412–86424. https://doi.org/10.1007/s11356-023-28474-0
  105. Miyata H., Shimada K., Kaneda Y., Ikawa M. Development of functional spermatozoa in mammalian spermiogenesis // Development. 2024. V. 151. № 14. https://doi.org/10.1242/dev.202838
  106. Han C. Gene expression programs in mammalian spermatogenesis // Development. 2024. V. 151. № 8. https://doi.org/10.1242/dev.202033
  107. Li L., Sha Y., Wang X. et al. Whole-exome sequencing identified a homozygous BRDT mutation in a patient with acephalic spermatozoa // Oncotarget. 2017. V. 8. № 12. P. 19914–19922. https://doi.org/10.18632/oncotarget.15251
  108. Joshi M., Sethi S., Mehta P. et al. Small RNAs, spermatogenesis, and male infertility: A decade of retrospect // Reprod. Biol. Endocrinol. 2023. V. 21. № 1. P. 106. https://doi.org/10.1186/s12958-023-01155-w
  109. Lim S.L., Qu Z.P., Kortschak R.D. et al. HENMT1 and piRNA stability are required for adult male germ cell transposon repression and to define the spermatogenic program in the mouse // PLoS Genet. 2015. V. 11. № 10. https://doi.org/10.1371/journal.pgen.1005620
  110. Dai P., Wang X., Gou L.T. et al. A translation-activating function of MIWI/piRNA during mouse spermiogenesis // Cell. 2019. V. 179. № 7. P. 1566–1581. https://doi.org/10.1016/j.cell.2019.11.022
  111. Hao S.L., Ni F.D., Yang W.X. The dynamics and regulation of chromatin remodeling during spermiogenesis // Gene. 2019. V. 706. P. 201–210. https://doi.org/10.1016/j.gene.2019.05.027
  112. Zini A., Phillips S., Courchesne A. et al. Sperm head morphology is related to high deoxyribonucleic acid stainability assessed by sperm chromatin structure assay // Fertil. Steril. 2009. V. 91. № 6. P. 2495–2500. https://doi.org/10.1016/j.fertnstert.2008.03.032
  113. Franken D.R. How accurate is sperm morphology as an indicator of sperm function? // Andrologia. 2015. V. 47. № 6. P. 720–723. https://doi.org/10.1111/and.12324
  114. Gao J., Yuan R., Yang S. et al. Age-related changes in human conventional semen parameters and sperm chromatin structure assay-defined sperm DNA/chromatin integrity // Reprod. Biomed. Online. 2021. V. 42. № 5. P. 973–982. https://doi.org/10.1016/j.rbmo.2021.02.006
  115. Lu J.C., Jing J., Chen L. et al. Analysis of human sperm DNA fragmentation index (DFI) related factors: A report of 1010 subfertile men in China // Reprod. Biol. Endocrinol. 2018. V. 16. № 1. P. 23. https://doi.org/ 10.1186/s12958-018-0345-y
  116. Kleshchev M., Osadchuk A., Osadchuk L. Impaired semen quality, an increase of sperm morphological defects and DNA fragmentation associated with environmental pollution in urban population of young men from Western Siberia, Russia // PLoS One. 2021. V. 16. № 10. https://doi.org/10.1371/journal.pone.0258900
  117. Torregrosa N., Domínguez-Fandos D., Camejo M.I. et al. Protamine 2 precursors, protamine 1/protamine 2 ratio, DNA integrity and other sperm parameters in infertile patients // Hum. Reprod. 2006. V. 21. № 8. P. 2084–2089. https://doi.org/10.1093/humrep/del114
  118. Beygi Z., Forouhari S., Mahmoudi E. et al. Role of oxidative stress and antioxidant supplementation in male fertility // Curr. Mol. Med. 2021. V. 21. № 4. P. 265–282. https://doi.org/10.2174/1566524020999200831123553
  119. Oumaima A., Tesnim A., Zohra H. et al. Investigation on the origin of sperm morphological defects: Oxidative attacks, chromatin immaturity, and DNA fragmentation // Environ. Sci. Pollut. Res. Int. 2018. V. 25. № 14. P. 13775–13786. https://doi.org/10.1007/s11356-018-1417-4
  120. Li K.P., Yang X.S., Wu T. The effect of antioxidants on sperm quality parameters and pregnancy rates for idiopathic male infertility: A network meta-analysis of randomized controlled trials // Front. Endocrinol. (Lausanne). 2022. V. 13. https://doi.org/10.3389/fendo.2022.810242
  121. Su L., Qu H., Cao Y., et al. Effect of antioxidants on sperm quality parameters in subfertile men: A systematic review and network meta-analysis of randomized controlled trials // Adv. Nutr. 2022. V. 13. № 2. P. 586–594. https://doi.org/10.1093/advances/nmab127

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Russian Academy of Sciences, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».