The SWI/SNF Chromatin-Remodeling Complex is a Crucial Regulator of Gene Expression Both in Physiological and Pathological States
- Authors: Soshnikova N.V.1, Bayramova D.O.1, Georgieva S.G.1
-
Affiliations:
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences
- Issue: Vol 61, No 11 (2025)
- Pages: 243–253
- Section: МОЛЕКУЛЯРНАЯ ГЕНЕТИКА
- URL: https://journals.rcsi.science/0016-6758/article/view/361202
- DOI: https://doi.org/10.7868/S3034510325110242
- ID: 361202
Cite item
Abstract
Keywords
About the authors
N. V. Soshnikova
Engelhardt Institute of Molecular Biology, Russian Academy of Sciences
Email: so2615nat@gmail.com
Moscow, Russia
D. O. Bayramova
Engelhardt Institute of Molecular Biology, Russian Academy of SciencesMoscow, Russia
S. G. Georgieva
Engelhardt Institute of Molecular Biology, Russian Academy of SciencesMoscow, Russia
References
- Bracken A.P., Brien G.L., Verrijzer C.P. Dangerous liaisons: Interplay between SWI/SNF, NuRD, and Polycomb in chromatin regulation and cancer // Genes Dev. 2019. V. 33. № 15–16. P. 936–959. https://doi.org/10.1101/gad.326066.119
- Becker P.B., Workman J.L. Nucleosome remodeling and epigenetics // Cold Spring Harb. Perspect. Biol. 2013. V. 5. № 9. https://doi.org/10.1101/cshperspect.a017905
- Clapier C.R., Iwasa J., Cairns B.R., Peterson C.L. Mechanisms of action and regulation of ATPdependent chromatin-remodelling complexes // Nat. Rev. Mol. Cell Biol. 2017. V. 18. № 7. P. 407–422. https://doi.org/10.1038/nrm.2017.26
- Brahma S., Henikoff S. RSC-associated subnucleosomes define MNase-sensitive promoters in yeast // Mol. Cell. 2019. V. 73. № 2. P. 238–249. https://doi.org/10.1016/j.molcel.2018.10.046
- Mueller B., Mieczkowski J., Kundu S. et al. Widespread changes in nucleo- some accessibility without changes in nucleosome occupancy during a rapid transcriptional induction // Genes Dev. 2017. V. 31. № 5. P. 451–462. https://doi.org/10.1101/gad.293118.116
- Phelan M.L., Sif S., Narlikar G.J., Kingston R.E. Reconstitution of a core chromatin remodeling complex from SWI/SNF subunits // Mol. Cell. 1999. V. 3. № 2. P. 247–253. https://doi.org/10.1016/S1097-2765(00)80315-9
- Kaeser M.D., Aslanian A., Dong M.-Q. et al. BRD7, a novel PBAF-specific SWI/SNF subunit, is required for target gene activation and repression in embryonic stem cells // J. Biol Chem. 2008. V. 283. № 47. P. 32254–32263. https://doi.org/10.1074/jbc.M806061200
- Moshkin Y.M., Chalkley G.E., Kan T.W. et al. Remodelers organize cellular chromatin by counteracting intrinsic histone-DNA sequence preferences in a class-specific manner // Mol. Cell Biol. 2012. V. 32. № 3. P. 675–688. https://doi.org/10.1128/mcb.06365-11
- Michel B.C., D’Avino A.R., Cassel S.H. et al. A noncanonical SWI/SNF complex is a synthetic lethal target in cancers driven by BAF complex perturbation // Nat. Cell Biol. 2018. V. 20. № 12. P. 1410–1420. https://doi.org/10.1038/s41556-018-0221-1
- Soshnikova N.V., Tatarskiy E.V., Tatarskiy V.V. et al. PHF10 subunit of PBAF complex mediates transcriptional activation by MYC // Oncogene. 2021. V. 40. № 42. P. 6071–6080. https://doi.org/10.1038/s41388-021-01994-0
- Viryasova G.M., Tatarskiy V.V. Jr, Sheynov A.A. et al. PBAF lacking PHD domains maintains transcription in human neutrophils // Biochim. Biophys. Acta Mol. Cell Res. 2019. V. 1866. № 12. https://doi.org/10.1016/j.bbamcr.2019.118525
- Soshnikova N.V., Azieva A.M., Klimenko N. et al. A novel chromatin-remodeling complex variant, dcPBAF, is involved in maintaining transcription in differentiated neurons // Front. Cell Dev. Biol. 2023. V. 11. https://doi.org/10.3389/fcell.2023.1271598
- Mashtalir N., Suzuki H., Farrell D.P. et al. A Structural model of the endogenous human BAF complex informs disease mechanisms // Cell. 2020. V. 183. № 3. P. 802–817.e24. https://doi.org/10.1016/j.cell.2020.09.051
- Yuan J., Chen K., Zhang W., Chen Z. Structure of human chromatin-remodelling PBAF complex bound to a nucleosome // Nature. 2022. V. 605. № 7908. P. 166–171. https://doi.org/10.1038/s41586-022-04658-5
- Wang L., Yu J., Yu Z. et al. Structure of nucleosomebound human PBAF complex // Nat. Commun. 2022. V. 13. № 1. P. 7644. https://doi.org/10.1038/s41467-022-34859-5
- Neely K.E., Hassan A.H., Wallberg A.E. et al. Activation domain-mediated targeting of the SWI/SNF complex to promoters stimulates transcription from nucleosome arrays // Mol. Cell. 1999. V. 4. № 4. P. 649–655. https://doi.org/10.1016/s1097-2765(00)80216-6
- Ferreira M.E., Prochasson P., Berndt K.D. et al. Activator-binding domains of the SWI/SNF chromatin remodeling complex characterized in vitro are required for its recruitment to promoters in vivo // FEBS J. 2009. V. 276. № 9. P. 2557–2565. https://doi.org/10.1111/j.1742-4658.2009.06979.x
- Hargreaves D.C., Crabtree G.R. ATP-dependent chromatin remodeling: Genetics, genomics and mechanisms // Cell Res. 2011. V. 21. № 3. P. 396–420. https://doi.org/10.1038/cr.2011.32
- Jeong K.W., Lee Y.-H., Stallcup M.R. Recruitment of the SWI/SNF chromatin remodeling complex to steroid hormone-regulated promoters by nuclear receptor coactivator f lightless-I // J. Biol. Chem. 2009. V. 284. № 43. P. 29298–29309. https://doi.org/10.1074/jbc.m109.037010
- Moonen J.-R., Chappell J., Shi M. et al. KLF4 recruits SWI/SNF to increase chromatin accessibility and reprogram the endothelial enhancer landscape under laminar shear stress // Nat. Commun. 2022. V. 13. № 1. P. 4941. https://doi.org/10.1038/s41467-022-32566-9
- Oo J.A., Warwick T., Pálfi K. et al. Long non-coding RNAs direct the SWI/SNF complex to cell type-specific enhancers // Nat. Commun. 2025. V. 16. № 1. P. 131. https://doi.org/10.1038/s41467-024-55539-6
- Boulay G., Sandoval G.J., Riggi N. et al. Cancerspecific retargeting of BAF complexes by a prion-like domain // Cell. 2017. V. 171. № 1. P. 163–178. https://doi.org/10.1016/j.cell.2017.07.036
- Wang Y., Zolotarev N., Yang C.-Y. et al. A prionlike domain in transcription factor EBF1 promotes phase separation and enables B cell programming of progenitor chromatin // Immunity. 2020. V. 53. № 6. P. 1151–1167. https://doi.org/10.1016/j.immuni.2020.10.009
- Patil A., Strom A.R., Paulo J.A. et al. A disordered region controls cBAF activity via condensation and partner recruitment // Cell. 2023. V. 186. № 22. P. 4936–4955. https://doi.org/10.1016/j.cell.2023.08.032
- Wei M.-T., Chang Y.-C., Shimobayashi S.F. el al. Nucleated transcriptional condensates amplify gene expression // Nat. Cell Biol. 2020. V. 22. № 10. P. 1187–1196. https://doi.org/10.1038/s41556-020-00578-6
- Ryu K., Park G., Cho W.-K. Emerging insights into transcriptional condensates // Exp. Mol. Med. 2024. V. 56. № 4. P. 820–826. https://doi.org/10.1038/s12276-024-01228-9
- Wibisana J.N., Inaba T., Shinohara H. et al. Enhanced transcriptional heterogeneity mediated by NF-κB super-enhancers // PLoS Genet. 2022. V. 18. № 6. https://doi.org/10.1371/journal.pgen.1010235
- Du M., Stitzinger S.H., Spille J.-H. et al. Direct observation of a condensate effect on super-enhancer controlled gene bursting // Cell. 2024. V. 187. № 2. P. 331–344. https://doi.org/10.1016/j.cell.2023.12.005
- Tang S.C., Vijayakumar U., Zhang Y., Fullwood M.J. Super-enhancers, phase-separated condensates, and 3D genome organization in cancer // Cancers (Basel). 2022. V. 14. № 12. https://doi.org/10.3390/cancers14122866
- Hnisz D., Shrinivas K., Young R.A. et al. A phase separation model for transcriptional control // Cell. 2017. V. 169. № 1. P. 13–23. https://doi.org/10.1016/j.cell.2017.02.007
- Davis R.B., Supakar A., Ranganath A.K. et al. Heterotypic interactions can drive selective cocondensation of prion-like low-complexity domains of FET proteins and mammalian SWI/SNF complex // Nat. Commun. 2024. V. 15. № 1. P. 1168. https://doi.org/10.1038/s41467-024-44945-5
- Davis R.B., Kaur T., Moosa M.M., Banerjee P.R. FUS oncofusion protein condensates recruit mSWI/SNF chromatin remodeler via heterotypic interactions between prion‐like domains // Protein Sci. 2021. V. 30. № 7. P. 1454–1466. https://doi.org/10.1002/pro.4127
- Mittal P., Roberts C.W.M. The SWI/SNF complex in cancer – biology, biomarkers and therapy // Nat. Rev. Clin. Oncol. 2020. V. 17. № 7. P. 435–448. https://doi.org/10.1038/s41571-020-0357-3
- Wanior M., Krämer A., Knapp S., Joerger A.C. Exploiting vulnerabilities of SWI/SNF chromatin remodelling complexes for cancer therapy // Oncogene. 2021. V. 40. № 21. P. 3637–3654. https://doi.org/10.1038/s41388-021-01781-x
- Centore R.C., Sandoval G.J., Soares L.M.M. et al. Mammalian SWI/SNF chromatin remodeling complexes: Emerging mechanisms and therapeutic strategies // Trends Genet. 2020. V. 36. № 12. P. 936–950. https://doi.org/10.1016/j.tig.2020.07.011
- Liao L., Alicea-Velázquez N.L., Langbein L. et al. High affinity binding of H3K14ac through collaboration of bromodomains 2, 4 and 5 is critical for the molecular and tumor suppressor functions of PBRM1 // Mol. Oncol. 2019. V. 13. № 4. P. 811–828. https://doi.org/10.1002/1878-0261.12434
- Slaughter M.J., Shanle E.K., McFadden A.W. et al. PBRM1 bromodomains variably inf luence nucleosome interactions and cellular function // J. Biol. Chem. 2018. V. 293. № 35. P. 13592–13603. https://doi.org/10.1074/jbc.RA118.003381
- Yao X., Hong J.H., Nargund A.M. et al. PBRM1-deficient PBAF complexes target aberrant genomic loci to activate the NF-κB pathway in clear cell renal cell carcinoma // Nat. Cell. Biol. 2023. V. 25. № 5. P. 765–777. https://doi.org/10.1038/s41556-023-01122-y
- Peng C., Zhou J., Liu H.Y. et al. The transcriptional regulation role of BRD7 by binding to acetylated histone through bromodomain // J. Cell Biochem. 2006. V. 97. № 4. P. 882–892. https://doi.org/10.1002/jcb.20645
- Burrows A.E., Smogorzewska A., Elledge S.J. Polybromo-associated BRG1-associated factor components BRD7 and BAF180 are critical regulators of p53 required for induction of replicative senescence // PNAS USA. 2010. V. 107. № 32. P. 14280–14285. https://doi.org/10.1073/pnas.1009559107
- Mondal J., Zhang J., Qing F. et al. Brd7 loss reawakens dormant metastasis initiating cells in lung by forging an immunosuppressive niche // Nat. Commun. 2025. V. 16. № 1. P. 1378. https://doi.org/10.1038/s41467-025-56347-2
- Park S.W., Lee J.M. Emerging roles of BRD7 in pathophysiology // Int. J. Mol. Sci. 2020. V. 21. № 19. https://doi.org/10.3390/ijms21197127
- Theodoulou N.H., Bamborough P., Bannister A.J. et al. Discovery of I-BRD9, a selective cell active chemical probe for bromodomain containing protein 9 inhibition // J. Med. Chem. 2016. V. 59. № 4. P. 1425–1439. https://doi.org/10.1021/acs.jmedchem.5b00256
- Filippakopoulos P., Picaud S., Mangos M. et al. Histone recognition and large-scale structural analysis of the human bromodomain family // Cell. 2012. V. 149. № 1. P. 214–231. https://doi.org/10.1016/j.cell.2012.02.013
- Gatchalian J., Malik S., Ho J. et al. A non-canonical BRD9-containing BAF chromatin remodeling complex regulates naive pluripotency in mouse embryonic stem cells // Nat. Commun. 2018. V. 9. № 1. P. 5139. https://doi.org/10.1038/s41467-018-07528-9
- Chugunov A.O., Potapova N.A., Klimenko N.S. et al. Conserved structure and evolution of DPF domain of PHF10-the specific subunit of PBAF chromatin remodeling complex // Int. J. Mol. Sci. 2021. V. 22. № 20. https://doi.org/10.3390/ijms222011134
- Mertsalov I.B., Kulikova D.A., Alimova-Kost M.V. et al. Structure and expression of two members of the d4 gene family in mouse // Mamm. Genome. 2000. V. 11. № 1. P. 72–74. https://doi.org/10.1007/s003350010014
- Lange M., Kaynak B., Forster U.B. et al. Regulation of muscle development by DPF3, a novel histone acetylation and methylation reader of the BAF chromatin remodeling complex // Genes Dev. 2008. V. 22. № 17. P. 2370–2384. https://doi.org/10.1101/gad.471408
- Hyun K., Ahn J., Kim H. et al. The BAF complex enhances transcription through interaction with H3K56ac in the histone globular domain // Nat. Commun. 2024. V. 15. № 1. P. 9614. https://doi.org/10.1038/s41467-024-53981-0
- Krasteva V., Crabtree G.R., Lessard J.A. The BAF45a/ PHF10 subunit of SWI/SNF-like chromatin remodeling complexes is essential for hematopoietic stem cell maintenance // Exp. Hematol. 2017. V. 48. P. 58–71. https://doi.org/10.1016/j.exphem.2016.11.008
- Schuettengruber B., Bourbon H.-M., Di Croce L., Cavalli G. Genome regulation by polycomb and Trithorax: 70 years and counting // Cell. 2017. V. 171. № 1. P. 34–57. https://doi.org/10.1016/j.cell.2017.08.002
- Pengelly A.R., Copur Ö., Jäckle H. et al. A histone mutant reproduces the phenotype caused by loss of histone-modifying factor Polycomb // Science. 2013. V. 339. № 6120. P. 698–699. https://doi.org/10.1126/science.1231382
- Entrevan M., Schuettengruber B., Cavalli G. Regulation of genome architecture and function by polycomb proteins // Trends Cell Biol. 2016. V. 26. № 7. P. 511–525. https://doi.org/10.1016/j.tcb.2016.04.009
- Ogiyama Y., Schuettengruber B., Papadopoulos G.L. et al. Polycomb-dependent chromatin looping contributes to gene silencing during Drosophila development // Mol. Cell. 2018. V. 71. № 1. P. 73–88. https://doi.org/10.1016/j.molcel.2018.05.032
- Nakayama R.T., Pulice J.L., Valencia A.M. et al. SMARCB1 is required for widespread BAF complex-mediated activation of enhancers and bivalent promoters // Nat. Genet. 2017. V. 49. № 11. P. 1613–1623. https://doi.org/10.1038/ng.3958
- Wang L., Jahren N., Miller E.L. et al. Correction for Wang et al. “comparative analysis of chromatin binding by sex comb on midleg (SCM) and other polycomb group repressors at a Drosophila hox gene” // Mol. Cell Biol. 2017. V. 37. № 15. https://doi.org/10.1128/MCB.00148-17
- Kadoch C., Williams R.T., Calarco J.P. et al. Dynamics of BAF-polycomb complex opposition on heterochromatin in normal and oncogenic states // Nat. Genet. 2017. V. 49. № 2. P. 213–222. https://doi.org/10.1038/ng.3734
- Kia S.K., Gorski M.M., Giannakopoulos S., Verrijzer C.P. SWI/SNF mediates polycomb eviction and epigenetic reprogramming of the INK4b-ARF-INK4a locus // Mol. Cell Biol. 2008. V. 28. № 10. P. 3457–3464. https://doi.org/10.1128/mcb.02019-07
- Han D., Jeon S., Sohn D.H. et al. SRG3, a core component of mouse SWI/SNF complex, is essential for extra-embryonic vascular development // Dev. Biol. 2008. V. 315. № 1. P. 136–146. https://doi.org/10.1016/j.ydbio.2007.12.024
- Bultman S., Gebuhr T., Mantia L. et al. A Brg1 null mutation in the mouse reveals functional differences among mammalian SWI/SNF complexes Polycomb and trithorax groups, play crucial roles in transcriptional regulation and participate in diverse processes, including cell proliferation and differentiation // Mol. Cell. 2000. V. 6. № 6. P. 1287–1295. https://doi.org/10.1016/s1097-2765(00)00127-1
- Roberts C.W., Galusha S.A., McMenamin M.E. et al. Haploinsufficiency of Snf5 (integrase interactor 1) predisposes to malignant rhabdoid tumors in mice // PNAS USA. 2000. V. 97. № 25. P. 13796–13800. https://doi.org/10.1073/pnas.250492697
- Kidder B.L., Palmer S., Knott J.G. SWI/SNF-Brg1 regulates self-renewal and occupies core pluripotencyrelated genes in embryonic stem cells // Stem Cells. 2009. V. 27. № 2. P. 317–328. https://doi.org/10.1634/stemcells.2008-0710
- Valencia A.M., Sankar A., van der Sluijs P.J. et al. Landscape of mSWI/SNF chromatin remodeling complex perturbations in neurodevelopmental disorders // Nat. Genet. 2023. V. 55. № 8. P. 1400–1412. https://doi.org/10.1038/s41588-023-01451-6
- Trejo-Villegas O.A., Heijink I.H., Ávila-Moreno F. Preclinical evidence in the assembly of mammalian SWI/SNF complexes: Epigenetic insights and clinical perspectives in human lung disease therapy // Mol. Ther. 2024. V. 32. № 8. P. 2470–2488. https://doi.org/10.1016/j.ymthe.2024.06.026
- Hodges C., Kirkland J.G., Crabtree G.R. The many roles of BAF (mSWI/SNF) and PBAF complexes in cancer // Cold Spring Harb. Perspect. Med. 2016. V. 6. № 8. https://doi.org/10.1101/cshperspect.a026930
- Amoretti M., Amsler C., Bonomi G. et al. Production and detection of cold antihydrogen atoms // Nature. 2002. V. 419. № 6906. P. 456–459. https://doi.org/10.1038/nature01096
- Alfert A., Moreno N., Kerl K. The BAF complex in development and disease // Epigenetics Chromatin. 2019. V. 12. № 1. https://doi.org/10.1186/s13072-019-0264-y
- Masliah-Planchon J., Bièche I., Guinebretière J.-M. et al. SWI/SNF chromatin remodeling and human malignancies // Annu. Rev. Pathol. 2015. V. 10. P. 145–171. https://doi.org/10.1146/annurev-pathol-012414-040445
- Andrades A., Peinado P., Alvarez-Perez J.C. et al. SWI/SNF complexes in hematological malignancies: Biological implications and therapeutic opportunities // Mol. Cancer. 2023. V. 22. № 1. P. 39. https://doi.org/10.1186/s12943-023-01736-8
- McBride M.J., Kadoch C. Disruption of mammalian SWI/SNF and polycomb complexes in human sarcomas: Mechanisms and therapeutic opportunities // J. Pathol. 2018. V. 244. № 5. P. 638–649. https://doi.org/10.1002/path.5042
- Doan D.N., Veal T.M., Yan Z. et al. Loss of the INI1 tumor suppressor does not impair the expression of multiple BRG1-dependent genes or the assembly of SWI/SNF enzymes // Oncogene. 2004. V. 23. № 19. P. 3462–3473. https://doi.org/10.1038/sj.onc.1207472
- Jamshidi F., Bashashati A., Shumansky K. et al. The genomic landscape of epithelioid sarcoma cell lines and tumours // J. Pathol. 2016. V. 238. № 1. P. 63–73. https://doi.org/10.1002/path.4636
- Oruetxebarria I., Venturini F., Kekarainen T. et al. p16 INK4a is required for hSNF5 chromatin remodelerinduced cellular senescence in malignant rhabdoid tumor cells // J. Biol. Chem. 2004. V. 279. № 5. P. 3807–3816. https://doi.org/10.1074/jbc.M309333200
- Inagaki H., Nagasaka T., Otsuka T. et al. Association of SYT-SSX fusion types with proliferative activity and prognosis in synovial sarcoma // Mod. Pathol. 2000. V. 13. № 5. P. 482–488. https://doi.org/10.1038/modpathol.3880083
- Kadoch C., Crabtree G.R. Abstract PR05: Reversing the oncogenic roles of misdirected chromatin remodeling: Disruption of mSWI/SNF (BAF) complexes by the SS18-SSX fusion in human synovial sarcoma // Cancer Res. 2013. V. 73. № 13. https://doi.org/10.1158/1538-7445.cec13-pr05
- Buscarlet M., Krasteva V., Ho L. et al. Essential role of BRG, the ATPase subunit of BAF chromatin remodeling complexes, in leukemia maintenance // Blood. 2014. V. 123. № 11. P. 1720–1728. https://doi.org/10.1182/blood-2013-02-483495
- Wilson B.G., Helming K.C., Wang X. et al. Residual complexes containing SMARCA2 (BRM) underlie the oncogenic drive of SMARCA4 (BRG1) mutation // Mol. Cell Biol. 2014. V. 34. № 6. P. 1136–1144. https://doi.org/10.1128/mcb.01372-13
- Sokpor G., Xie Y., Rosenbusch J., Tuoc T. Chromatin remodeling BAF (SWI/SNF) complexes in neural development and disorders // Front. Mol. Neurosci. 2017. V. 10. P. 243. https://doi.org/10.3389/fnmol.2017.00243
- Feehley T., O’Donnell C.W., Mendlein J. et al. Drugging the epigenome in the age of precision medicine // Clin. Epigenetics. 2023. V. 15. № 1. P. 6. https://doi.org/10.1186/s13148-022-01419-z
- Malone H.A., Roberts C.W.M. Chromatin remodellers as therapeutic targets // Nat. Rev. Drug Discov. 2024. V. 23. № 9. P. 661–681. https://doi.org/10.1038/s41573-024-00978-5
- Ordonez-Rubiano S.C., Maschinot C.A., Wang S. et al. Rational design and development of selective BRD7 bromodomain inhibitors and their activity in prostate cancer // J. Med. Chem. 2023. V. 66. № 16. P. 11250–11270. https://doi.org/10.1021/acs.jmedchem.3c00671
- Hohmann A.F., Martin L.J., Minder J.L. et al. Sensitivity and engineered resistance of myeloid leukemia cells to BRD9 inhibition // Nat. Chem. Biol. 2016. V. 12. № 9. P. 672–679. https://doi.org/10.1038/nchembio.2115
- Weisberg E., Chowdhury B., Meng C. et al. BRD9 degraders as chemosensitizers in acute leukemia and multiple myeloma // Blood Cancer J. 2022. V. 12. № 7. P. 110. https://doi.org/10.1038/s41408-022-00704-7
- Cui H., Yi H., Bao H. et al. The SWI/SNF chromatin remodeling factor DPF3 regulates metastasis of ccRCC by modulating TGF-β signaling // Nat. Commun. 2022. V. 13. № 1. P. 4680. https://doi.org/10.1038/s41467-022-32472-0
- Brechalov A.V., Georgieva S.G., Soshnikova N.V. Mammalian cells contain two functionally distinct PBAF complexes incorporating different isoforms of PHF10 signature subunit // Cell Cycle. 2014. V. 13. № 12. P. 1970–1979. https://doi.org/10.4161/cc.28922
- Békés M., Langley D.R., Crews C.M. PROTAC targeted protein degraders: the past is prologue // Nat. Rev. Drug Discov. 2022. V. 21. № 3. P. 181–200. https://doi.org/10.1038/s41573-021-00371-6
- Winter G.E., Buckley D.L., Paulk J. et al. Phthalimide conjugation as a strategy for in vivo target protein degradation // Science. 2015. V. 348. № 6241. P. 1376–1381. https://doi.org/10.1126/science.aab1433
Supplementary files

