Genetic Technologies in the Development of Industrial Microbiology

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Modern strains of microorganisms used in industrial microbiology are the result of complex genetic manipulations. Such strains carry dozens of different mutations that alter the cell’s life strategy and ensure the overproduction of a target metabolite. Methods of induced variability (mutagenesis, genetic engineering, editing methods), and in recent years, methods of synthetic biology (de novo gene synthesis) have made the main contribution to the design of strains. At the same time, it is the methods of genomic editing (bacteriophage-specific recombination, homologous recombination and CRISP Cas systems) that meet modern biosafety requirements, and most importantly, they are the most powerful tool for creating industrial producer strains that ensure economically sound production of products with high market potential. The report examine the features of different editing systems for industrially significant types of microorganisms (corynebacteria, bacilli, enterobacteria, yeast), provide examples of the creation of strains-producers (amino acids, acrylic monomers, and carotenoids) at NRC “Kurchatov Institute” using the potential of natural diversity and genomic editing, and analyze the current state and measures for accelerated development of industrial microbiology.

About the authors

A. S Yanenko

National Research Center «Kurchatov Institute»

Email: Yanenko_AS@nrcki.ru
Moscow, Russia

References

  1. Hirasawa T., Maeda T. Adaptive laboratory evolution of microorganisms: Methodology and application for bioproduction // Microorganisms. 2022. V. 11. № 1. P. 92. https://doi.org/10.3390/microorganisms11010092
  2. Zhu Y. Advances in CRISPR/Cas9 // BioMed Res. Int. 2022. V. 23. https://doi.org/10.1155/2022/9978571
  3. Iram A., Dong Y., Ignea C. Synthetic biology advances towards a bio-based society in the era of artificial intelligence // Curr. Opin. Biotechnol. 2024. V. 87. https://doi.org/10.1016/j.copbio.2024.103143
  4. Bubnov D.M., Yuzbashev T.V., Khozov A.A. et al. Robust counterselection and advanced λRed recombineering enable markerless chromosomal integration of large heterologous constructs // Nucl. Acids Res. 2022. V. 50. № 15. P. 8947–8960. https://doi.org/10.1093/nar/gkac649
  5. Yuzbashev T.V., Yuzbasheva E.Y., Melkina O.E. et al. A DNA assembly toolkit to unlock the CRISPR/Cas9 potential for metabolic engineering // Comm. Biol. 2023. V. 6. № 858. https://doi.org/10.1038/s42003-023-05202-5
  6. Shemyakina A.O., Grechishnikova E.G., Novikov A.D. et al. A set of active promoters with different activity profiles for superexpressing Rhodococcus strain // ACS Synth. Biol. 2021. V. 10. № 3. P. 515–530. https://doi.org/10.1021/acssynbio.0c00508
  7. Рябченко Л.Е., Шустикова Т.Е., Шереметьева М.Е. и др. Патент РФ RU 2 639 247 L-лизин-продуцирующая коринеформация бактерия с инактивированным геном ltbr и способ получения L-лизина с использованием этой бактерии.
  8. Debabov V.G. The threonine story // Adv. Biochem. Eng. Biotechnol. 2003. V. 79. P. 113–136. https://doi.org/10.1007/3-540-45989-8_4
  9. Khozov A.A., Bubnov D.M., Plisov E.D. et al. A study on L-threonine and L-serine uptake in Escherichia coli K-12 // Front. Microbiol. 2023. V. 14. https://doi.org/10.3389/fmicb.2023.1151716
  10. Morbach S., Junger C., Sahm H., Eggeling L. Attenuation control of ilvBNC in Corynebacterium glutamicum: Evidence of leader peptide formation without the presence of a ribosome binding site // J. Biosci. Bioeng. 2000. V. 90. P. 501–507. https://doi.org/10.1016/s1389-1723(01)80030-x
  11. Ryabchenko L., Titov I., Leonova T. et al. Mutational analysis supports three-hairpin model of attenuator for transcription regulation of ilvBNCoperon in Corynebacterium glutamicum // Microorganisms. 2025. V. 13. № 291. P. 2–16. https://doi.org/10.3390/microorganisms13020291
  12. Yuzbasheva E.Y., Taratynova M.O., Fedyaeva I.M. et al. Large-scale bioproduction of natural astaxanthin in Yarrowia lipolytica // Biores. Technol. Rep. 2023. V. 21. https://doi.org/10.1016/j.biteb.2022.101289
  13. Дебабов В.Г., Яненко А.С. Биокаталитический гидролиз нитрилов // Обзорный журнал по химии. 2011. Т. 1. № 4. С. 376–394.
  14. Лавров К.В., Ларикова Г.А., Яненко А.С. Новый биокаталитический процесс – синтез N-замещенных акриламидов // Биотехнология. 2012. № 4. С. 26–30.
  15. Grechishnikova E.G., Shemyakina A.O., Novikov A.D. et al. Rhodococcus: sequences of genetic parts, analysis of their functionality, and development prospects as a molecular biology platform // Crit. Rev. Biotechnol. 2022. V. 43. № 6. P. 835–850. https://doi.org/10.1080/07388551.2022.2091976
  16. Lavrov K.V., Shemyakina A.O., Grechishnikova E.G. et al. A new concept of biocatalytic synthesis of acrylic monomers for obtaining water-soluble acrylic heteropolymers // Metab. Eng. Commun. 2024. V. 18. https://doi.org/10.1016/j.mec.2023.e00231

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).