Changes in Genomes and Karyotypes during Speciation and Progressive Evolution of Plants
- Authors: Rodionov A.V.1
-
Affiliations:
- Komarov Botanical Institute of the Russian Academy of Sciences
- Issue: Vol 61, No 11 (2025)
- Pages: 166-183
- Section: ГЕНЕТИКА РАСТЕНИЙ
- URL: https://journals.rcsi.science/0016-6758/article/view/361196
- DOI: https://doi.org/10.7868/S303451032510182
- ID: 361196
Cite item
Abstract
Interspecies hybridization and polyploidy play a major role in the processes of speciation and progressive evolution in plants. There are three possible ways of transforming hybrid genomes, which is somehow related to speciation in plants: 1). Introgression – the hybrid genome is stabilized by backcrossing with parental species without polyploidization – this is how such species as the Finnish spruce Picea ×fennica arose. 2). Genome polyploidization – the hybrid genome becomes stable while retaining doubled sets of chromosomes of the parent species. It can be called a “good” (eu-) polyploid. Most genomes/karyotypes of numerous polyploid polyploid plant species are in the eupolypoloid state. This is a fast and effective way of speciation, but speciation at an already mastered level of evolutionary complexity. 3). Dysploidy and secondary diploidization of the genome – intensive genomic rearrangements occur in the hybrid and polyploid genome and karyotype. A significant part of the duplicated copies is pseudogenized or deleted. The number of chromosomes in the haploid genome is radically reduced, often to a level close to the primary diploid chromosome numbers “2x”. Different individuals of a species that have embarked on the path of stochastic “fractionation” of the genome and dysploidy, retain different sets of unique and multiplied during WGD protein-coding genes, transposons, short interfering and long non-coding RNAs. In this case, intraspecific genomic and epigenetic polymorphism increases radically, that provides rich material for natural selection. Diploidization of genomes and karyotypes makes combinations of gene alleles and neogens, previously buffered in the polyploid state, available for testing by natural selection. Massive gene losses during genome fractionation can have a most unexpected effect on the phenotype, which often takes neotenous forms. Some neotenic morphotypes with diploidized and fractionated postpolyploid genomes, “hopeful monsters”, have such an original combination of gene families and morphological features that gives their carriers a chance to become the founder of a new large taxon, tribe, family, class.
About the authors
A. V. Rodionov
Komarov Botanical Institute of the Russian Academy of Sciences
Email: avrodionov@mail.ru
Saint Petersburg, Russia
References
- Burki F., Roger A.J., Brown M.W., Simpson A.G. The new tree of eukaryotes // Trends Ecol. Evol. 2020. V. 35. P. 43–55. https://doi.org/10.1016/j.tree.2019.08.008
- Koonin E.V. The origin and early evolution of eukaryotes in the light of phylogenomics // Genome Biol. 2010. V. 11. P. 1–12. https://doi.org/10.1186/gb-2010-11-5-209
- Раутиан М.С., Шнеер В.С., Родионов А.В. Полифилия носителей хлоропластов: где располагаются растения на древе жизни? // Turczaninowia. 2019. Т. 22. № 2. С. 121–132. https://doi.org/10.14258/turczaninowia.22.2.7
- Cerón-Romero M.A., Fonseca M.M., De Oliveira Martins L. et al. Phylogenomic analyses of 2,786 genes in 158 lineages support a root of the eukaryotic tree of life between Opisthokonts and all other lineages // Genome Biol. Evol. 2022. V. 14. https://doi.org/10.1093/gbe/evac119
- Dobzhansky T. Genetics of the Еvolutionary Process. N.Y., London: Columbia Univ. Press, 1970. 505 p.
- Grant V. Plant Speciation. N.Y., London: Columbia Univ. Press, 1971. 435 p.
- Folk R.A., Soltis P.S., Soltis D.E., Guralnick R. New prospects in the detection and comparative analysis of hybridization in the tree of life // Am. J. Bot. 2018. V. 105. P. 364–375. https://doi.org/10.1002/ajb2.1018
- Stull G.W., Pham K.K., Soltis P.S., Soltis D.E. Deep reticulation: Тhe long legacy of hybridization in vascular plant evolution // Plant J. 2023. V. 114. P. 743–766. https://doi.org/10.1111/tpj.16142
- Whitney K.D., Ahern J.R., Campbell L.G. et al. Patterns of hybridization in plants // Perspect. Plant Ecol. Evol. Syst. 2010. V. 12. P. 175–182. https://doi.org/10.1016/j.ppees.2010.02.002
- Шнеер В.С., Пунина Е.О., Домашкина В.В., Родионов А.В. Криптогибриды у растений – подводная часть айсберга // Ботан. журнал. 2023. Т. 108. № 12. С. 1037–1053. https://doi.org/10.31857/S0006813623120098
- Van de Peer Y., Mizrachi E., Marchal K. The evolutionary significance of polyploidy // Nat. Rev. Genet. 2017. V. 18. P. 411–424. https://doi.org/10.1038/nrg.2017.26
- Eaton D.A., Hipp A.L., González-Rodríguez A., Cavender-Bares J. Historical introgression among the American live oaks and the comparative nature of tests for introgression // Evolution. 2015. V. 69. P. 2587–2601. https://doi.org/10.1111/evo.12758
- Leroy T., Louvet J.M., Lalanne C. et al. Adaptive introgression as a driver of local adaptation to climate in European white oaks // New Phytol. 2020. V. 226. P. 1171–1182. https://doi.org/10.1111/nph.16095
- Орлова Л.В., Егоров А.А. К систематике и географическому распространению ели финской (Picea fennica (Regel) Kom., Pinaceae) // Новости сист. высш. растений. 2010. Вып. 42. С. 5–23.
- Agafonov A.V., Shabanova E.V., Emtseva M.V. et al. Phylogenetic and taxonomic relationships between morphotypes related to Elymus caninus (Poaceae) based on sequence of a nuclear gene GBSS1 (waxy) and sexual hybridization // J. Syst. Evol. 2024. V. 62. P. 520–533. https://doi.org/10.1111/jse.13006
- Родионов А.В. Межвидовая гибридизация и полиплоидия в эволюции растений // Вавил. журн. генетики и селекции. 2013. Т. 17. № 4 (2). С. 916–929.
- Anderson E. Introgressive hybridization. N.Y., London: Hafner Publ. Comp., 1968. 109 p.
- Rieseberg L.H., Willis J.H. Plant speciation // Science. 2007. V. 317. P. 910–914. https://doi.org/10.1126/science.1137729
- Soltis P.S., Soltis D.E. The role of hybridization in plant speciation // Annu. Rev. Plant Biol. 2009. V. 60. P. 561–588. https://doi.org/10.1146/annurev.arplant.043008.092039
- Родионов А.В. Эуполиплоидия как способ видообразования у растений // Генетика. 2023. Т. 59. № 5. С. 493–506. https://doi.org/0.31857/S0016675823050119
- Wood T.E., Takebayashi N., Barker M.S. et al. The frequency of polyploid speciation in vascular plants // PNAS USA. 2009. V. 106. P. 13875–13879. https://doi.org/10.1073/pnas.0811575106
- Mandakova T., Lysak M.A. Post-polyploid diploidization and diversification through dysploid changes // Curr. Opin. Plant Biol. 2018. V. 42. P. 55–65. https://doi.org/10.1016/j.pbi.2018.03.001
- Li Z., McKibben M.T., Finch G.S. et al. Patterns and processes of diploidization in land plants // Annu. Rev. Plant Biol. 2021. V. 72. P. 387–410. https://doi.org/10.1146/annurev-arplant-050718-100344
- Scarrow M., Wang Y., Sun G. Molecular regulatory mechanisms underlying the adaptability of polyploid plants // Biol. Rev. 2021. V. 96. P. 394–407. https://doi.org/10.1111/brv.12661
- He X., Qi Z., Liu Z. et al. Pangenome analysis reveals transposon-driven genome evolution in cotton // BMC Biol. 2024. V. 22. P. 92. https://doi.org/10.1186/s12915-024-01893-2
- Decena M.Á., Sancho R., Inda L.A. et al. Expansions and contractions of repetitive DNA elements reveal contrasting evolutionary responses to the polyploid genome shock hypothesis in Brachypodium model grasses // Front. Plant Sci. 2024. V. 15. https://doi.org/10.3389/fpls.2024.1419255
- Teng J., Wang J., Zhang L. et al. Paleopolyploidies and genomic fractionation in major eudicot clades // Front. Plant Sci. 2022. V. 13. https://doi.org/10.3389/fpls.2022.883140
- Bomblies K. Learning to tango with four (or more): The molecular basis of adaptation to polyploid meiosis // Plant Reprod. 2023. V. 36. P. 107–124. https://doi.org/10.1007/s00497-022-00448-1
- Родионов А.В., Шнеер В.С., Гнутиков А.А. и др. Диалектика видов: от исходного единообразия, через максимально возможное разнообразие к конечному единообразию // Ботан. журнал. 2020. Т. 105. № 9. С. 835–853 https://doi.org/10.31857/S0006813620070091
- Favarger C. Sur l’emploi des nombres chromosomiques en geographie botanique historique // Ber. Geobot. Inst. Rubel. 1961. V. 32. P. 119–146.
- Mandakova T., Joly S., Krzywinski M. et al. Fast diploidization in close mesopolyploid relatives of Arabidopsis // Plant Cell. 2010. V. 22. P. 2277–2290. https://doi.org/10.1105/tpc.110.074526
- Родионов А.В., Носов Н.Н., Ким Е.С. и др. Происхождение полиплоидных геномов мятликов (Poa L.) и феномен потока генов между Северной Пацификой и субантарктическими островами // Генетика. 2010. Т. 46. № 12. С. 1598–1608.
- Пробатова Н.С. Хромосомные числа в семействе Poaceae и их значение для систематики, филогении и фитогеографии (на примере злаков Дальнего Востока России) // Комаровские чтения. Вып. 55. Владивосток, 2007. С. 9–103.
- Guerra M. Chromosome numbers in plant cytotaxonomy: Сoncepts and implications // Cytogenet. Genome Res. 2008. V. 120. P. 339–350. https://doi.org/10.1159/000121083
- Pecrix Y., Rallo G., Folzer H. et al. Polyploidization mechanisms: Тemperature environment can induce diploid gamete formation in Rosa sp. // J. Exp. Bot. 2011. V. 62. P. 3587–3597. https://doi.org/10.1093/jxb/err052
- Prentis P.J., Wilson J.R., Dormontt E.E. et al. Adaptive evolution in invasive species // Trends Plant Sci. 2008. V. 13. P. 288–294. https://doi.org/10.1016/j.tplants.2008.03.004
- Meudt H.M., Albach D.C., Tanentzap A.J. et al. Polyploidy on islands: Its emergence and importance for diversification // Front. Plant Sci. 2021. V. 12. https://doi.org/10.3389/fpls.2021.637214
- Rice A., Šmarda P., Novosolov M. et al. The global biogeography of polyploid plants // Nature Ecol. Evol. 2019. V. 3. P. 265–273. https://doi.org/10.1038/s41559-018-0787-9
- Carman J.G. Asynchronous expression of duplicate genes in angiosperm may cause apomixis, bispory, tetraspory, and polyembryony // Biol. J. Linn. Soc. 1997. V. 61. P. 51–94. https://doi.org/10.1111/j.1095-8312.1997.tb01778.x
- Winterfeld G., Schneider J., Perner K., Roser M. Polyploidy and hybridization as main factors of speciation: Complex reticulate evolution within the grass genus Helictochloa // Cytogen. Genome Res. 2014. V. 142. P. 204–225. https://doi.org/10.1159/000361002
- Suissa J.S., Kinosian S.P., Schafran P.W. et al. Homoploid hybrids, allopolyploids, and high ploidy levels characterize the evolutionary history of a western North American quillwort (Isoetes) complex // Mol. Phylogenet. Evol. 2022. V. 166. https://doi.org/10.1016/j.ympev.2021.107332
- Шнеер В.С., Пунина Е.О., Родионов А.В. Внутривидовые различия в плоидности у покрытосеменных и их таксономическая интерпретация // Ботан. журнал. 2018. Т. 103. № 5. С. 555–585. https://doi.org/10.1134/S0006813618050010
- Sutherland B.L., Galloway L.F. Postzygotic isolation varies by ploidy level within a polyploid complex // New Phytol. 2017. V. 213. P. 404–412. https://doi.org/10.1111/nph.14116
- Цвелев Н.Н. Вид как один из таксонов // Бюлл. МОИП. Отд. биол. 1995. Т. 100. Вып. 5. С. 62–68.
- Камелин Р.В. Особенности видообразования у цветковых растений // Тр. Зоол. ин-та РАН. 2009. Т. 313. Прил. 1. С. 141–149.
- Гребельный С.Д. Много ли на свете клональных видов. Ч. 2. Клонирование в природе, его роль в формировании разнообразия фауны и флоры // Зоол. беспозвоночных. 2006. Т. 3. № 1. С. 77–109.
- Hojsgaard D., Pellino M., Sharbel T.F., Hörandl E. Resolving genome evolution patterns in asexual plants // Next Generation Sequencing in Plant Systematics / Eds Hörandl E., Appelhans M.S. Königstein: Koeltz Sci. Books, 2015. P. 119–153. https://doi.org/10.14630/ 000005
- Soltis P.S., Soltis D.E. Ancient WGD events as drivers of key innovations in angiosperms // Curr. Opin. Plant Biol. 2016. V. 30. P. 159–165. https://doi.org/10.1016/j.pbi.2016.03.015
- Landis J.B., Soltis D.E., Li Z. et al. Impact of whole – genome duplication events on diversification rates in angiosperms // Amer. J. Bot. 2018. V. 105. P. 348–363. https://doi.org/10.1002/ajb2.1060
- Schranz M.E., Mohammadin S., Edger P.P. Ancient whole genome duplications, novelty and diversification: the WGD radiation lag-time model // Curr. Opin. Plant Biol. 2012. V. 15. P. 147–153. https://doi.org/10.1016/j.pbi.2012.03.011
- Ma P.F., Liu Y.L., Jin G.H. et al. The Pharus latifolius genome bridges the gap of early grass evolution // Plant Cell. 2021. V. 33. P. 846–864. https://doi.org/10.1093/plcell/koab015
- Huang J., Xu W., Zhai J. et al. Nuclear phylogeny and insights into whole-genome duplications and reproductive development of Solanaceae plants // Plant Commun. 2023. V. 4. https://doi.org/10.1016/j.xplc.2023.100595
- Mayrose I., Zhan S.H., Rothfels C.J. et al. Recently formed polyploid plants diversify at lower rates // Science. 2011. V. 333. P. 1257–1267. https://doi.org/10.1126/science.1207205
- Clark J.W. Genome evolution in plants and the origins of innovation // New Phytol. 2023. V. 240. P. 2204–2209. https://doi.org/10.1111/nph.19242
- Patel N., Budke J.M., Bainard J. Distinct patterns of genome size evolution in each bryophyte lineage are not correlated with whole genome duplication // Ann. Bot. 2025. https://doi.org/10.1093/aob/mcaf012
- Skaptsov M.V., Vaganov A.V., Kechaykin A.A. et al. The cytotypes variability of the complex Selaginella sanguinolenta s. L. // Turczaninowia. 2020. V. 23. № 2. P. 5–14. https://doi.org/10.14258/turczaninowia.23.2.1
- Liang Z., Schnable J.C. Functional divergence between subgenomes and gene pairs after whole genome duplications // Mol. Plant. 2018. V. 11. P. 388–397. https://doi.org/10.1016/j.molp.2017.12.010
- Carta A., Bedini G., Peruzzi L. A deep dive into the ancestral chromosome number and genome size of flowering plants // New Phytol. 2020. V. 228. P. 1097–1106. https://doi.org/10.1111/nph.16668
- Li Z., Kinosian S.P., Zhan S., Barker M.S. Ancient polyploidy and low rate of chromosome loss explain the high chromosome numbers of homosporous ferns // bioRxiv. 2024. https://doi.org/10.1101/2024.09.23.614530
- Klekowski E.J. Jr., Baker H.G. Evolutionary significance of polyploidy in the Pteridophyta // Science. 1966. V. 153. P. 305–307. https://doi.org/10.1126/science.153.3733.305
- Zhong Y., Liu Y., Wu W. et al. Genomic insights into genetic diploidization in the homosporous fern Adiantum nelumboides // Gen. Biol. Evol. 2022. V. 14. https://doi.org/10.1093/gbe/evac127
- Levin D.A., Wilson A.C. Rates of evolution in seed plants: Net increase in diversity of chromosome numbers and species numbers through time // PNAS USA. 1976. V. 73. https://doi.org/10.1073/pnas.73.6.2086
- Laurie D.A., Bennett M.D. The timing of chromosome elimination in hexaploid wheat × maize crosses // Genome. 1989. V. 32. P. 953–961. https://doi.org/10.1139/g89-537
- Evtushenko E.V., Lipikhina Y.A., Stepochkin P.I., Vershinin A.V. Cytogenetic and molecular characteristics of rye genome in octoploid Triticale (× Triticosecale Wittmack) // Comp. Cytogen. 2019. V. 13. № 4. P. 423–434. https://doi.org/10.3897/ CompCytogen.v13i4.39576
- Rutledge S.D., Cimini D. Consequences of aneuploidy in sickness and in health // Curr. Opin. Cell. Biol. 2016. V. 40. P. 41–46. https://doi.org/10.1016/j.ceb.2016.02.003
- Gaeta R.T., Pires J.C., Iniguez-Luy F. et al. Genomic changes in resynthesized Brassica napus and their effect on gene expression and phenotype // Plant Cell. 2007. V. 19. P. 3403–3417. https://doi.org/10.1105/tpc.107.054346
- Lim K.Y., Soltis D.E., Soltis P.S. et al. Rapid chromosome evolution in recently formed polyploids in Tragopogon (Asteraceae) // PloS One. 2008. V. 3. https://doi.org/10.1371/journal.pone.0003353
- Zhang A., Li N., Gong L. et al. Global analysis of gene expression in response to whole-chromosome aneuploidy in hexaploid wheat // Plant Physiol. 2017. V. 175. P. 828–847. https://doi.org/10.1104/pp.17.00819
- Panchy N., Lehti-Shiu M., Shiu S.H. Evolution of gene duplication in plants // Plant Physiol. 2016. V. 171. № 4. P. 2294–2316. https://doi.org/10.1104/pp.16.00523
- D’Hont A., Denoeud F., Aury J.M. et al. The banana (Musa acuminata) genome and the evolution of monocotyledonous plants // Nature. 2012. V. 488. P. 213–217. https://doi.org/10.1038/nature11241
- International Wheat Genome Sequencing Consortium. Shifting the limits in wheat research and breeding using a fully annotated reference genome // Science. 2018. V. 361. https://doi.org/10.1126/science.aar7191
- Chalhoub B., Denoeud F., Liu S. et al. Early allopolyploid evolution in the post-neolithic Brassica napus oilseed genome // Science. 2014. V. 345. P. 950–953. https://doi.org/10.1126/science.1253435
- Yoo M.J., Szadkowski E., Wendel J.F. Homoeolog expression bias and expression level dominance in allopolyploid cotton // Heredity. 2013. V. 110. P. 171–180. https://doi.org/10.1038/hdy.2012.94
- Родионов А.В., Амосова А.В., Крайнова Л.М. и др. Феномен высокой частоты мутаций в генах 35S рРНК С-субгенома у полиплоидных видов Avena L. // Генетика. 2020. Т. 56. № 6. С. 657–666. https://doi.org/10.31857/S0016675820060090
- Wang X., Morton J.A., Pellicer J. et al. Genome downsizing after polyploidy: Mechanisms, rates and selection pressures // Plant J. 2021. V. 107. P. 1003–1015. https://doi.org/10.1111/tpj.15363
- Xiong Z., Gaeta R.T., Pires J.C. Homoeologous shuffling and chromosome compensation maintain genome balance in resynthesized allopolyploid Brassica napus // PNAS USA. 2011. V. 108. P. 7908–7913. https://doi.org/10.1073/pnas.1014138108
- Buggs R.J., Chamala S., Wu W. et al. Rapid, repeated, and clustered loss of duplicate genes in allopolyploid plant populations of independent origin // Curr. Biol. 2012. V. 22. P. 248–252. https://doi.org/10.1016/j.cub.2011.12.027
- Bayer P.E., Scheben A., Golicz A.A. et al. Modelling of gene loss propensity in the pangenomes of three Brassica species suggests different mechanisms between polyploids and diploids // Plant Biotechnol. J. 2021. V. 19. P. 2488–2500. https://doi.org/10.1111/pbi.13674
- Lien S., Koop B.F., Sandve S.R. et al. The Atlantic salmon genome provides insights into rediploidization // Nature. 2016. V. 533. P. 200–205. https://doi.org/10.1038/nature17164
- Li Y.H., Zhou G., Ma J. et al. De novo assembly of soybean wild relatives for pan-genome analysis of diversity and agronomic traits // Nat. Biotechnol. 2014. V. 32. P. 1045–1052. https://doi.org/10.1038/nbt.2979
- Golicz A.A., Bayer P.E., Barker G.C. et al. The pangenome of an agronomically important crop plant Brassica oleracea // Nat. Commun. 2016. V. 7. https://doi.org/0.1038/ncomms13390
- Gordon S.P., Contreras-Moreira B., Woods D.P. et al. Extensive gene content variation in the Brachypodium distachyon pan-genome correlates with population structure // Nat. Commun. 2017. V. 8. P. 2184. https://doi.org/10.1038/s41467-017-02292-8
- Montenegro J.D., Golicz A.A., Bayer P.E. et al. The pangenome of hexaploid bread wheat // Plant J. 2017. V. 90. P. 1007–1013. https://doi.org/10.1111/tpj.13515
- Seetharam A.S., Yu Y., Belanger S. et al. The Streptochaeta genome and the evolution of the grasses // Front. Plant Sci. 2021. V. 12. https://doi.org/10.3389/fpls.2021.710383
- Ma P.F., Liu Y.L., Jin G.H. et al. The Pharus latifolius genome bridges the gap of early grass evolution // Plant Cell. 2021. V. 33. P. 846–864. https://doi.org/10.1093/plcell/koab015
- Harris B.J., Harrison C.J., Hetherington A.M., Williams T.A. Phylogenomic evidence for the monophyly of bryophytes and the reductive evolution of stomata // Curr. Biol. 2020. V. 30. P. 2001–2012. https://doi.org/10.1016/j.cub.2020.03.048
- Renzaglia K.S., Browning W.B., Merced A. With over 60 independent losses, stomata are expendable in mosses // Front. Plant Sci. 2020. V. 11. https://doi.org/10.3389/fpls.2020.00567
- Ma X., Vanneste S., Chang J. et al. Seagrass genomes reveal a hexaploid ancestry facilitating adaptation to the marine environment // BioRxiv. 2023. https://doi.org/10.1101/2023.03.05.531170.
- Michael T.P., Ernst E., Hartwick N. et al. Genome and time-of-day transcriptome of Wolffia australiana link morphological minimization with gene loss and less growth control // Genome Res. 2021. V. 31. P. 225–238. https://doi.org/10.1101/gr.266429.120
- Domazet-Lošo M., Široki T., Šimičević K., Domazet-Lošo T. Macroevolutionary dynamics of gene family gain and loss along multicellular eukaryotic lineages // Nat. Commun. 2024. V. 15. P. 2663. https://doi.org/10.1038/s41467-024-47017-w
- Goldschmidt R. Some aspects of evolution // Science. 1933. V. 78. P. 539–547. https://doi.org/10.1126/science.78.2033.539
- Van Steenis C.G.G.J. Plant speciation in Malesia, with special reference to the theory of non-adaptive saltatory evolution // Biol. J. Linn. Soc. 1969. V. 1. P. 97–133. https://doi.org/10.1111/j.1095-8312.1969.tb01815.x
- Тахтаджян А.Л. Макроэволюционные процессы в истории растительного мира // Ботан. журнал. 1983. Т. 68. № 12. С. 1593–1603.
- Кольцов Н.К. Организация клетки. М., Л.: Гос. изд-во биол. и мед. лит-ры, 1936. C. 520.
- Van Steenis C.G.G.J. Autonomous evolution in plants. Differences in plant and animal evolution // Gard. Bull. Singapore. 1977. V. 29. P. 103–126.
- Guo H., Jiao Y., Tan X. et al. Gene duplication and genetic innovation in cereal genomes // Genome Res. 2019. V. 29. P. 261–269. https://doi.org/10.1101/gr.237511.118
- Freeling M. Bias in plant gene content following different sorts of duplication: Тandem, whole-genome, segmental, or by transposition // Annu. Rev. Plant Biol. 2009. V. 60. P. 433–453. https://doi.org/10.1146/annurev.arplant.043008.092122
- Kuzmin E., Taylor J.S., Boone C. Retention of duplicated genes in evolution // Trends Genet. 2021. V. 38. P. 59–72. https://doi.org/10.1016/j.tig.2021.06.016
- Lallemand T., Leduc M., Landes C. et al. An overview of duplicated gene detection methods: Why the duplication mechanism has to be accounted for in their choice // Genes. 2020. V. 11. https://doi.org/10.3390/genes11091046
- Vollger M.R., Guitart X., Dishuck P.C. et al. Segmental duplications and their variation in a complete human genome // Science. 2022. V. 376. https://doi.org/10.1126/science.abj6965
- Busche M., Pucker B., Viehover P. et al. Genome sequencing of Musa acuminata Dwarf Cavendish reveals a duplication of a large segment of chromosome 2 // G3 (Bethesda). 2020. V. 10. P. 37–42. https://doi.org/10.1534/g3.119.400847
- Shimizu N. Gene amplification and the extrachromosomal circular DNA // Genes. 2021. V. 12. https://doi.org/10.3390/genes12101533
- Koo D.H., Molin W.T., Saski C.A. et al. Extrachromosomal circular DNA-based amplification and transmission of herbicide resistance in crop weed Amaranthus palmeri // PNAS USA. 2018. V. 115. P. 3332–3337. https://doi.org/10.1073/pnas.1719354115
- Ain Q., Schmeer C., Wengerodt D. et al. Extrachromosomal circular DNA: Сurrent knowledge and implications for CNS aging and neurodegeneration // Int. J. Mol. Sci. 2020. V. 21. https://doi.org/10.3390/ijms21072477
- Kono T.J., Brohammer A.B., McGaugh S.E., Hirsch C.N. Tandem duplicate genes in maize are abundant and date to two distinct periods of time // G3 (Bethesda). 2018. V. 8. P. 3049–3058. https://doi.org/10.1534/g3.118.200580
- Blanc G., Wolfe K.H. Functional divergence of duplicated genes formed by polyploidy during Arabidopsis evolution // Plant Cell. 2004. V. 16. P. 1679–1691. https://doi.org/10.1105/tpc.021410
- Yu J., Wang J., Lin W. et al. The genomes ofOryza sativa: A history of duplications // PLoS Biol. 2005. V. 3. https://doi.org/10.1371/journal.pbio.0030038
- Zhang L., Zhu X., Zhao Y. et al. Phylotranscriptomics resolves the phylo geny of Pooideae and uncovers factors for their adaptive evolution // Mol. Biol. Evol. 2022. V. 39. https://doi.org/10.1093/molbev/msac026
- Bent A.F., Mackey D. Elicitors, effectors, and R genes: The new paradigm and a lifetime supply of questions // Annu. Rev. Phytopathol. 2007. V. 45. P. 399–436. https://doi.org/10.1146/annurev.phyto.45.062806.094427
- Shao Z.Q., Xue J.Y., Wang Q. et al. Revisiting the origin of plant NBS-LRR genes // Trends Plant Sci. 2019. V. 24. P. 9–12. https://doi.org/10.1016/j.tplants.2018.10.015
- Wei H., Liu J., Guo Q. et al. Genomic organization and comparative phylogenic analysis of NBS-LRR resistance gene family in Solanum pimpinellifolium and Arabidopsis thaliana // Evol. Bioinformatics. 2020. V. 16. https://doi.org/10.1177/117693432091105
- Meyers B.C., Kozik A., Griego A. et al. Genome-wide analysis of NBS-LRR–encoding genes in Arabidopsis // Plant Cell. 2003. V. 15. P. 809–834. https://doi.org/10.1105/tpc.009308
- Yang S., Gu T., Pan C. et al. Genetic variation of NBS-LRR class resistance genes in rice lines // Theor. Appl. Genet. 2008. V. 116. P. 165–177. https://doi.org/10.1007/s00122-007-0656-4
- Goffova I., Fajkus J. The rDNA loci – intersections of replication, transcription, and repair pathways // Int. J. Mol. Sci. 2021. V. 22. https://doi.org/10.3390/ijms22031302
- Takahashi H. Sulfate transport systems in plants: Functional diversity and molecular mechanisms underlying regulatory coordination // J. Exp. Bot. 2019. V. 70. P. 4075–4087. https://doi.org/10.1093/jxb/erz132
- Eirin-Lopez J.M., Rebordinos L., Rooney A.P., Rozas J. The birth-and-death evolution of multigene families revisited // Genome Dyn. 2012. P. 170–196. https://doi.org/10.1159/000337119
- Yuan D., He X., Han X. et al. Comprehensive review and evaluation of computational methods for identifying FLT3-internal tandem duplication in acute myeloid leukaemia // Brief. Bioinform. 2021. V. 22. https://doi.org/10.1093/bib/bbab099
- Khan I.U., Rono J.K., Zhang B.Q. et al. Identification of novel rice (Oryza sativa) HPP and HIPP genes tolerant to heavy metal toxicity // Ecotoxicol. Environ. Saf. 2019. V. 175. P. 8–18. https://doi.org/10.1016/j.ecoenv.2019.03.040
- Force A., Lynch M., Pickett F.B. et al. Preservation of duplicate genes by complementary, degenerative mutations // Genetics. 1999. V. 151. P. 1531–1545. https://doi.org/10.1093/genetics/151.4.1531
- Rodgers-Melnick E., Mane S.P., Dharmawardhana P. et al. Contrasting patterns of evolution following whole genome versus tandem duplication events in Populus // Genome Res. 2012. V. 22. P. 95–105. https://doi.org/10.1101/gr.125146.111
- Wu F., Shi X., Lin X. et al. The ABC s of flower development: Mutational analysis of AP 1/FUL-like genes in rice provides evidence for a homeotic (A)-function in grasses // Plant J. 2017. V. 89. P. 310–324. https://doi.org/10.1111/tpj.13386
- Li W., Chen Y., Ye M. et al. Evolutionary history of the C-repeat binding factor/dehydration-responsive element-binding 1 (CBF/DREB1) protein family in 43 plant species and characterization of CBF/DREB1 proteins in Solanum tuberosum // BMC Evol. Biol. 2020. V. 20. P. 142. https://doi.org/10.1186/s12862-020-01710-8
- Guo J., Ren Y., Tang Z. et al. Characterization and expression profiling of the ICE-CBF-COR genes in wheat // PeerJ. 2019. V. 7. https://doi.org/10.7717/peerj.8190
- Ibarra-Laclette E., Lyons E., Hernandez-Guzman G. et al. Architecture and evolution of a minute plant genome // Nature. 2013. V. 498. P. 94–98. https://doi.org/10.1038/nature12132
- Lan T., Renner T., Ibarra-Laclette E. et al. Longread sequencing uncovers the adaptive topography of a carnivorous plant genome // PNAS USA. 2017. V. 114. P. E4435–E4441. https://doi.org/10.1073/pnas.1702072114
- Adamec L., Matušikova I., Pavlovič A. Recent ecophysiological, biochemical and evolutional insights into plant carnivory // Ann. Bot. 2021. V. 128. P. 241–259. https://doi.org/10.1093/aob/mcab071
- Palfalvi G., Hackl T., Terhoeven N. et al. Genomes of the Venus flytrap and close relatives unveil the roots of plant carnivory // Curr. Biol. 2020. V. 30. P. 2312–2320. https://doi.org/10.1016/j.cub.2020.04.051
- Gruzdev E.V., Kadnikov V.V., Beletsky A.V. et al. Plastid genomes of carnivorous plants Drosera rotundifolia and Nepenthes × ventrata reveal evolutionary patterns resembling those observed in parasitic plants // Int. J. Mol. Sci. 2019. V. 20. https://doi.org/10.3390/ijms20174107
- Arendsee Z.W., Li L., Wurtele E.S. Coming of age: orphan genes in plants // Trends Plant Sci. 2014. V. 19. P. 698–708. https://doi.org/10.1016/j.tplants.2014.07.003
- Yao C., Yan H., Zhang X., Wang R. A database for orphan genes in Poaceae // Exp. Ther. Med. 2017. V. 14. P. 2917–2924. https://doi.org/10.3892/etm.2017.4918
- Stein J.C., Yu Y., Copetti D. et al. Genomes of 13 domesticated and wild rice relatives highlight genetic conservation, turnover and innovation across the genus Oryza // Nat. Genet. 2018. V. 50. P. 285–296. https://doi.org/10.1038/s41588-018-0040-0
- Guo T., Yang J., Li D. et al. Integrating GWAS, QTL, mapping and RNA-seq to identify candidate genes for seed vigor in rice (Oryza sativa L.) // Mol. Breeding. 2019. V. 39. P. 1–16. https://doi.org/10.1007/s11032-019-0993-4
- Wang W., Zheng H., Fan C. et al. High rate of chimeric gene origination by retroposition in plant genomes // Plant Cell. 2006. V. 18. P. 1791–1802. https://doi.org/10.1105/tpc.106.041905
- Zhou Y., Zhang C., Zhang L. et al. Gene fusion as an important mechanism to generate new genes in the genus Oryza // Genome Biol. 2022. V. 23. P. 130. https://doi.org/10.1186/s13059-022-02696-w
- Jiang N., Feschotte C., Zhang X., Wessler S.R. Using rice to understand the origin and amplification of miniature inverted repeat transposable elements (MITEs) // Curr. Opin. Plant Biol. 2004. V. 7. P. 115–119. https://doi.org/10.1016/j.pbi.2004.01.004
- Li G., Zhang T., Yu Z. et al. An efficient oligo-FISH painting system for revealing chromosome rearrangements and polyploidization in Triticeae // Plant J. 2021. V. 105. P. 978–993. https://doi.org/10.1111/tpj.15081
- Huang Y., Chen J., Dong C. Species-specific partial gene duplication in Arabidopsis thaliana evolved novel phenotypic effects on morphological traits under strong positive selection // Plant Cell. 2022. V. 34. P. 802–817. https://doi.org/10.1093/plcell/koab291
- Chen X., Rechavi O. Plant and animal small RNA communications between cells and organisms // Nat. Rev. Mol. Cell. Biol. 2022. V. 23. P. 185–203. https://doi.org/10.1038/s41580-021-00425-y
- Zhao Z., Zang S., Zou W. et al. Long non-coding RNAs: New players in plants // Int. J. Mol. Sci. 2022. V. 23. https://doi.org/0.3390/ijms23169301
- Barber W.T., Zhang W., Win H. et al. Repeat associated small RNAs vary among parents and following hybridization in maize // PNAS USA. 2012. V. 109. P. 10444–10449. https://doi.org/10.1073/pnas.1202073109
- Wu L., Liu S., Qi H. et al. Research progress on plant long non-coding RNA // Plants. 2020. V. 9. https://doi.org/10.3390/plants9040408
Supplementary files


