Synthetic Biology. Morality and Reason

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The review is devoted to advances in the creation of an artificial cell using synthetic biology methods. All achievements in this area are directly related not only to the possibility of answering the question of how life was created on this planet, but also impose great risks on the creation of objects that can be directed to the detriment of humanity or individual groups of people. Since modern technologies make it possible to synthesize the genomes of many organisms (bacteria and viruses) in vitro without complex equipment, only the moral and ethical qualities of the researcher, his foresight and deep study of the consequences of his actions can ensure the correct development of synthetic biology as a new and very promising science, without fear of possible negative consequences.

About the authors

D. S. Matyushkina

Scientific Research Institute for Systems Biology and Medicine

Email: d.matyushkina@sysbiomed.ru
Moscow, Russia

K. S. Gorbunov

Scientific Research Institute for Systems Biology and Medicine

Moscow, Russia

G. Y. Fisunov

Scientific Research Institute for Systems Biology and Medicine

Moscow, Russia

V. M. Govorun

Scientific Research Institute for Systems Biology and Medicine

Moscow, Russia

References

  1. Оссовская М. Рыцарь и буржуа. Исследования по истории морали. М.: Прогресс, 1987. 528 с.
  2. Дольник В.Р. Непослушное дитя биосферы. Беседы о поведении человека в компании птиц, зверей и детей. М.: Издательство МЦНИО, 2016. 352 с.
  3. Эфроимсон В.П. Генетика этики и эстетики. М.: Тайдекс Ко, 2004. 304 с.
  4. Хаузер М. Мораль и разум. Как природа создавала наше универсальное чувство добра и зла / под ред. Александрова Ю.И. М.: Дрофа, 2008. 639 с.
  5. Yus E., Maier T., Michalodimitrakis K. et al. Impact of genome reduction on bacterial metabolism and its regulation // Science. 2009. V. 326. № 5957. P. 1263–1268. https://doi.org/10.1126/science.1177263
  6. Breuer M., Earnest T.M., Merryman C. et al. Essential metabolism for a minimal cell // eLife. 2019. V. 8. https://doi.org/10.7554/eLife.36842
  7. Morowitz H.J. The completeness of molecular biology // Israel J. Med. Sci. 1984. V. 20. P. 750–753.
  8. Wilkins M., Pasquali C., Appel R. et al. From proteins to proteomes: Large scale protein identification by two-dimensional electrophoresis and amino acid analysis // Nat. Biotechnol. 1996. V. 14. P. 61–65. https://doi.org/10.1038/nbt0196-61
  9. Güell M., van Noort V., Yus E. et al. Transcriptome complexity in a genome-reduced bacterium // Science. 2009. V. 326. № 5957. P. 1268–1271. https://doi.org/10.1126/science.1176951
  10. Gibson D.G., Glass J.I., Lartigue C. et al. Creation of a bacterial cell controlled by a chemically synthesized genome // Science. 2010. V. 329. № 5987. P. 52–56. https://doi.org/10.1126/science.1190719
  11. Hutchison C.A. 3rd, Chuang R.Y., Noskov V.N. et al. Design and synthesis of a minimal bacterial genome // Science. 2016. V. 351. № 6280. https://doi.org/10.1126/science.aad6253
  12. De C., Bittencourt D.M., Brown D.M., Assad-Garcia N. et al. Minimal bacterial cell JCVI-syn3B as a chassis to investigate interactions between bacteria and mammalian cells // ACS Synth. Biol. 2024. V. 13. № 4. https://doi.org/10.1021/acssynbio.3c00513
  13. Burgos R., Weber M., Martinez S. et al. Protein quality control and regulated proteolysis in the genome-reduced organism Mycoplasma pneumoniae // Mol. Syst. Biol. 2020. V. 16. № 1.
  14. Karr J.R., Sanghvi J.C., Macklin D.N. et al. A whole-cell computational model predicts phenotype from genotype // Cell. 2012. V. 150. № 2. P. 389–401. https://doi.org/10.1016/j.cell.2012.05.044
  15. Maritan M., Autin L., Karr J. et al. Building structural models of a whole mycoplasma cell // J. Mol. Biol. 2022. V. 434. № 2. https://doi.org/10.1016/j.jmb.2021.167351
  16. Fisunov G.Y., Zubov A.I., Pobeguts O.V. et al. The dynamics of Mycoplasma gallisepticum nucleoid structure at the exponential and stationary growth phases // Front. Microbiol. 2021. V. 18. № 12. https://doi.org/10.3389/fmich.2021.753760
  17. Butenko I., Vanyushkina A., Pobeguts O. et al. Response induced in Mycoplasma gallisepticum under heat shock might be relevant to infection process // Sci. Rep. 2017. V. 7. № 1. P. 11330. https://doi.org/10.1038/s41598-017-09237-7
  18. Matyushkina D., Pobeguts O., Butenko I. et al. Phase transition of the bacterium upon invasion of a host cell as a mechanism of adaptation: A Mycoplasma gallisepticum model // Sci. Rep. 2016. V. 24. № 6. https://doi.org/10.1038/srep35959
  19. Mazin P.V., Fisunov G.Y., Gorbachev A.Y. et al. Transcriptome analysis reveals novel regulatory mechanisms in a genome-reduced bacterium // Nucl. Ac. Res. 2014. V. 42. № 21. P. 13254–13268. https://doi.org/10.1093/nar/gku976
  20. Fisunov G.Y., Evsyutina D.V., Garanina I.A. et al. Ribosome profiling reveals an adaptation strategy of reduced bacterium to acute stress // Biochimie. 2017. V. 132. P. 66–74. https://doi.org/10.1016/j.biochi.2016.10.015
  21. Vanyushkina A.A., Fisunov G.Y., Gorbachev A.Y. et al. Metabolomic analysis of three Mollicute species // PLoS One. 2014. V. 9. № 3. https://doi.org/10.1371/journal.pone.0089312
  22. Fisunov G.Y., Garanina I.A., Evsyutina D.V. et al. Reconstruction of transcription control networks in Mollicutes by high-throughput identification of promoters // Front. Microbiol. 2016. V. 7. https://doi.org/10.3389/fmich.2016.01977
  23. Maier T., Schmidt A., Güell M. et al. Quantification of mRNA and protein and integration with protein turnover in a bacterium // Mol. Syst. Biol. 2011. V. 7. P. 511. https://doi.org/10.1038/msb.2011.38
  24. Fisunov G.Y., Tsvetkov V.B., Tsoy E.A. et al. WniA transcription factor provides feedback loop between translation and energy production in a genome-reduced bacterium // Front. Microbiol. 2024. V. 15. https://doi.org/10.3389/fmich.2024.1504418
  25. Alberti S., Gladfelter A., Mittag T. Considerations and challenges in studying liquid-liquid phase separation and biomolecular condensates // Cell. 2019. V. 176. № 3. P. 419–434. https://doi.org/10.1016/j.cell.2018.12.035
  26. Ellis R.J. Macromolecular crowding: Obvious but underappreciated // Trends Biochem. Sci. 2001. V. 26. № 10. P. 597–604. https://doi.org/10.1016/S0968-0004(01)01398-7
  27. Kühner S., van Noort V., Betts M.J. et al. Proteome organization in a genome-reduced bacterium // Science. 2009. V. 326. № 5957. P. 1235–1240. https://doi.org/10.1126/science.1176343
  28. Fredens J., Wang K., de la Torre D. et al. Total synthesis of Escherichia coli with a recoded genome // Nature. 2019. V. 569. P. 514–518. https://doi.org/10.1038/s41586-019-1192-5
  29. Venetz J.E., Del Medico L., Wolfle A. et al. Chemical synthesis rewriting of a bacterial genome to achieve design flexibility and biological functionality // PNAS USA. 2019. V. 116. № 16. P. 8070–8079. https://doi.org/10.1073/pnas.1818259116
  30. Richardson S.M., Mitchell L.A., Straegiadario G. et al. Design of a synthetic yeast genome // Science. 2017. V. 355. № 6329. P. 1040–1044. https://doi.org/10.1126/science.aaf4557
  31. Cello J., Paul A.V., Wimmer E. Chemical synthesis of poliovirus cDNA: Generation of infectious virus in the absence of natural template // Science. 2002. V. 297. № 5583. P. 1016–1018. https://doi.org/10.1126/science.1072266
  32. Smith H.O., Hutchison C.A. 3rd, Pfannkoch C., Venter J.C. Generating a synthetic genome by whole genome assembly: PhIX174 bacteriophage from synthetic oligonucleotides // PNAS USA. 2003. V. 100. № 26. P. 15440–15445. https://doi.org/10.1073/pnas.2237126100
  33. Фисунов Г.Ю., Семашко Т.А., Евсютина Д.В. и др. Chirres riconna бактериофага N4 // Пробл. особо опасных инфекций. 2024. Т. 1. С. 182–191. https://doi.org/10.21055/0370-1069-2024-1-182-191
  34. Karim A.S., Brown D.M., Archuleta C.M. et al. Deconstructing synthetic biology across scales: A conceptual approach for training synthetic biologists // Nat. Commun. 2024. V. 15. P. 5425. https://doi.org/10.1038/s41467-024-49626-x

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).