Dqa1 gene variability in wild and domestic reindeer (Rangifer tarandus) of the Asian part of Russia
- 作者: Konorov E.A.1,2, Kurbakov K.A.1,2, Semina M.T.1, Voronkova V.N.1, Onokhov A.A.1, Layshev K.A.1,3
-
隶属关系:
- Vavilov Institute of General Genetics, Russian Academy of Sciences
- Gorbatov Federal Research Center for Food Systems, Russian Academy of Sciences
- Center for Interdisciplinary Research of Food Security Problems
- 期: 卷 61, 编号 7 (2025)
- 页面: 83-90
- 栏目: ГЕНЕТИКА ЖИВОТНЫХ
- URL: https://journals.rcsi.science/0016-6758/article/view/330900
- DOI: https://doi.org/10.31857/S0016675825070065
- ID: 330900
如何引用文章
详细
Modern tendencies to intensification of breeding of domestic farm animals including reindeer necessitate a detailed study of genetic variability in candidate genes associated with meat productivity. At present, the primary task is to search for molecular genetic markers for identification and selection of individuals with desired characteristics. One such potential candidate gene is the DQA1 gene. It is hypothesized that individual genes of the immune system may influence the growth performance of animals. Variability in the DQA1 gene region has been associated with cattle size and beef production in many studies. Principal component analysis on DQA1 variability united wild and domestic reindeer in Yakutia, which implies gene flow between local breeds of domesticated reindeer and wild populations, and the formation of similar adaptation mechanisms. However, significant differences were found between wild and Evenki reindeer of the Amur region, which may reflect the influence of domestication processes on the Evenki breed.
作者简介
E. Konorov
Vavilov Institute of General Genetics, Russian Academy of Sciences; Gorbatov Federal Research Center for Food Systems, Russian Academy of Sciences
Email: casqy@yandex.ru
Moscow, 119991 Russia; Moscow, 109316 Russia
K. Kurbakov
Vavilov Institute of General Genetics, Russian Academy of Sciences; Gorbatov Federal Research Center for Food Systems, Russian Academy of Sciences
Email: casqy@yandex.ru
Moscow, 119991 Russia; Moscow, 109316 Russia
M. Semina
Vavilov Institute of General Genetics, Russian Academy of Sciences
Email: casqy@yandex.ru
Moscow, 119991 Russia
V. Voronkova
Vavilov Institute of General Genetics, Russian Academy of Sciences
Email: casqy@yandex.ru
Moscow, 119991 Russia
A. Onokhov
Vavilov Institute of General Genetics, Russian Academy of Sciences
Email: casqy@yandex.ru
Moscow, 119991 Russia
K. Layshev
Vavilov Institute of General Genetics, Russian Academy of Sciences; Center for Interdisciplinary Research of Food Security Problems
编辑信件的主要联系方式.
Email: casqy@yandex.ru
Moscow, 119991 Russia; St. Petersburg, Pushkin, 196608 Russia
参考
- Al-Waith H.K., Al-Anbari N.N., Mohamed T.R. Relationship of the DQA1 gene polymorphism with productive performance in Holstein cattle // Plant Archives. 2018. V. 18. P. 2636–2640. https://doi.org/10.5555/20203001636
- Kim H., Caetano-Anolles K., Seo M. et al. Prediction of genes related to positive selection using whole- genome resequencing in three commercial pig breeds // Genomics Inform. 2015. V. 13. P. 137–145. https://doi.org/10.5808/GI.2015.13.4.137
- Vandre R.K., Gowane G.R., Sharma A.K., Tomar S.S. Immune responsive role of MHC class II DQA1 gene in livestock // Livest. Res. Int. 2014. V. 2. P. 1–7.
- Park Y.H., Joo Y.S., Park J.Y. et al. Characterization of lymphocyte subpopulations and major histocompatibi- lity complex haplotypes of mastitis-resistant and susceptible cows // J. Veter. Sci. 2004. V. 5. № 1. P. 29–39. https://doi.org/10.4142/jvs.2004.5.1.29
- Vandre R.K., Sharma A.K., Gowane G.R. et al. Trend of association of BoLA-DQA1 alleles with FMDV vaccine elicited immune response in crossbred cattle // Indian J. Anim. Sci. 2014. V. 84. № 6. P. 619–623. https://doi.org/10.56093/ijans.v84i6.41569
- Cronin M.A., Renecker L., Pierson B.J., Patton J.C. Genetic variation in domestic reindeer and wild caribou in Alaska // Animal Genetics. 1995. V. 26. № 6. P. 427–434. https://doi.org/10.1111/j.1365-2052.1995.tb02695.x
- Kennedy L.J., Modrell A., Groves P. et al. Genetic diversity of the major histocompatibility complex class II in Alaskan caribou herds // Int. J. Immunogenetics. 2011. V. 38. № 2. P. 109–119. https://doi.org/10.1111/j.1744-313X.2010.00973.x
- Lukacs M., Nymo I.H., Madslien K. et al. Functional immune diversity in reindeer reveals a high Arctic population at risk // Front. in Ecol. and Evol. 2023. V. 10. https://doi.org/10.3389/fevo.2022.1058674
- Muuttoranta K., Holand Ø., Røed K.H. et al. Genetic variation in meat production related traits in reindeer (Rangifer t. tarandus) // Rangifer. 2014. V. 34. № 1. P. 21–36. https://doi.org/10.7557/2.34.1.2753
- Николаев С.В., Матюков В.С., Филатов А.В. Изменения микросателлитного профиля в опытном стаде северных оленей ненецкой породы // Междунар. вестник ветеринарии. 2023. № 3. С. 275–283. https://doi.org/10.52419/issn2072-2419.2023.3.275
- Сёмина М.Т., Каштанов С.Н., Бабаян О.В. и др. Анализ генетического разнообразия и популяционной структуры ненецкой аборигенной породы северных оленей на основе микросателлитных маркеров // Генетика. 2022. Т. 58. № 8. С. 954–966. https://doi.org/ 10.31857/S0016675822080069
- Kharzinova V.R., Dotsev A.V., Solovieva A.D. et al. Genome-wide SNP analysis reveals the genetic diversity and population structure of the domestic reindeer population (Rangifer tarandus) inhabiting the indigenous tofalarlands of southern Siberia // Diversity. 2022. V. 14. № 11. P. 900.
- Kholodova M.V., Baranova A.I., Mizin I.A. et al. A genetic predisposition to chronic wasting disease in the reindeer Rangifer tarandus in the Northern European part of Russia // Biology Bulletin. 2019. V. 46. P. 555–561. https://doi.org/10.1134/S1062359019060074
- Курбаков К.А., Коноров Е.А., Семина М.Т., Столповский Ю.А. Распространение ассоциированных с болезнью хронического изнурения аллелей гена PRNP у диких и домашних северных оленей Rangifer tarandus на территории России // Генетика. 2022. Т. 58. № 2. С. 163–168. https://doi.org/10.31857/S0016675822020102
- Keane O.M., Dodds K.G., Crawford A.M., McEwan J.C. Transcriptional profiling of Ovis aries identifies Ovar-DQA1 allele frequency differences between nematode-resistant and susceptible selection lines // Phy- siol. Genomics. 2007. V. 30. № 3. P. 253–261.
- Ye J., Coulouris G., Zaretskaya I. et al. Primer-BLAST: А tool to design target-specific primers for polymerase chain reaction // BMC Bioinformatics. 2012. V. 13. № 1. P. 1–11. https://doi.org/10.1186/1471-2105-13-134
- Kluesner M.G., Nedveck D.A., Lahr W.S. et al. EditR: A method to quantify base editing from Sanger sequen- cing // The CRISPR J. 2018. V. 1. № 3. P. 239–250. https://doi.org/10.1089/crispr.2018.0014
- Edgar R.C. MUSCLE: Multiple sequence alignment with high accuracy and high throughput // Nucl. Acids Res. 2004. V. 32. № 5. P. 1792–1797. https://doi.org/10.1093/nar/gkh340
- Kumar S., Stecher G., Li M. et al. MEGA X: Мolecular evolutionary genetics analysis across compu- ting platforms // Mol. Biol. Evol. 2018. V. 35. № 6. P. 1547–1549. https://doi.org/10.1093/molbev/msy096
- Lê S., Josse J., Husson F. FactoMineR: Аn R pac- kage for multivariate analysis // J. Stat. Software. 2008. V. 25. P. 1–18. https://doi.org/ 10.18637/jss.v025.i01
- Svishcheva G., Babayan O., Sipko T. et al. Genetic differentiation between coexisting wild and domestic reindeer (Rangifer tarandus L. 1758) in Northern Eu- rasia // Genet. Resources. 2022. V. 3. № 6. P. 1–14. https://doi.org/10.46265/genresj.UYML5006
补充文件
