Genetics and Epigenetics of Precocious Puberty

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Central precocious puberty (СPP) is caused by premature reactivation of the hypothalamic-pituitary-gonadal axis. Genetic, epigenetic and environmental factors play a crucial role in determining the timing of puberty. In recent years, the KISS1, KISS1R, MKRN3 and DLK1 variants have been identified as hereditary causes of CPP. The MKRN3 and DLK1 genes are imprinted, and therefore epigenetic modifications that alter the expression of these genes are also considered as a cause of precocious puberty. With the progression of CPP, epigenetic factors such as DNA methylation, posttranslational modifications of histones and non-coding RNAs can mediate the relationship between the influence of genetic variants and the environment. CPP is also associated with other short- and long-term adverse health effects. This is the basis for research aimed at understanding the genetic and epigenetic causes of СPP. The purpose of this review is to summarize the literature data on the molecular genetic and epigenetic mechanisms of the formation of СPP.

About the authors

E. A. Sazhenova

Scientific Research Institute of Medical Genetics, Tomsk National Research Medical Center
of the Russian Academy of Sciences

Author for correspondence.
Email: elena.sazhenova@medgenetics.ru
Russia, 634050, Tomsk

S. A. Vasilyev

Scientific Research Institute of Medical Genetics, Tomsk National Research Medical Center
of the Russian Academy of Sciences

Email: elena.sazhenova@medgenetics.ru
Russia, 634050, Tomsk

L. V. Rychkova

Scientific Center for Family Health and Human Reproduction

Email: elena.sazhenova@medgenetics.ru
Russia, 664003, Irkutsk

E. E. Khramova

Scientific Center for Family Health and Human Reproduction

Email: elena.sazhenova@medgenetics.ru
Russia, 664003, Irkutsk

I. N. Lebedev

Scientific Research Institute of Medical Genetics, Tomsk National Research Medical Center
of the Russian Academy of Sciences

Email: elena.sazhenova@medgenetics.ru
Russia, 634050, Tomsk

References

  1. Дедов И.И., Семичева Т.В., Петеркова В.А. Половое развитие детей: норма и патология. М.: Колор Ит. Студио, 2002. 232 с.
  2. US Department of Health and Human Services. Third National Health and Nutrition Examination Survey, 1988–1994 // Hyattsville. MD: National Center for Health Statistics, Centers for Disease Control and Prevention. 1999. https://www.academia.edu/6706974/ Third_National_Health_and_Nutrition_Examination_Survey
  3. Bleil M.E., Booth-LaForce C., Benner A.D. Race disparities in pubertal timing: Implications for cardiovascular disease risk among African American women // Popul. Res. Policy Rev. 2017. V. 36. P. 717–738. https://doi.org/10.1007/s11113-017-9441-5
  4. Петеркова В.А., Алимова И.Л., Башнина Е.Б. и др. Клинические рекомендации “преждевременное половое развитие” // Проблемы эндокринологии. 2021. Т. 67. № 5. С. 84–103. https://doi.org/10.14341/probl12821
  5. Kim Y.J., Kwon A., Jung M.K. et al. Incidence and prevalence of central precocious puberty in Korea: An epidemiologic study based on a national database // J. Pediatr. 2019. V. 208. P. 221–228.
  6. Eckert-Lind C., Busch A.S., Petersen J.H. et al. Worldwide secular trends in age at pubertal onset assessed by breast development among girls: A systematic review and meta-analysis // JAMA Pediatr. 2020. V. 174. № 4. P. e195881. https://doi.org/10.1001/jamapediatrics.2019.5881
  7. Brauner E.V., Busch A.S., Eckert-Lind C. et al. Trends in the incidence of central precocious puberty and normal variant puberty among children in Denmark, 1998 to 2017 // JAMA Netw. Open. 2020. V. 3. № 10. P. e2015665. https://doi.org/10.1001 /jamanetworkopen.2020.15665
  8. Maione L., Bouvattier C., Kaiser U.B. Central precocious puberty: Recent advances in understanding the etiology and in the clinical approach // Clin. Endocrinol. 2021. V. 95. № 4. P. 542–555. https://doi.org/10.1111/cen.14475
  9. Soriano-Guillen L., Corripio R., Labarta K. et al. Central precocious puberty in children living in Spain: incidence, prevalence, and influence of adoption and immigration // J. Clin. Endocrinol. Metab. 2010. V. 95. № 9. P. 4305–4313.
  10. Zhu J., Kusa T.O., Chan Y.M. Genetics of pubertal timing // Curr. Opin. Pediatr. 2018. V. 30. P. 532–540. https://doi.org/10.1097/MOP.0000000000000642
  11. Valadares L.P., Meireles C.G., De Toledo I.P. et al. MKRN3 mutations in central precocious puberty: A systematic review and meta-analysis // J. Endocr. Soc. 2019. V. 3. P. 979–995. https://doi.org/10.1210/js.2019-00041
  12. Varimo T., Wang Y., Miettinen P.J. et al. Circulating miR-30b levels increase during male puberty // Eur. J. Endocrinol. 2021. V. 184. № 5. P. K11–K14.
  13. Shim Y.S., Lee H.S., Hwang J.S. Genetic factors in precocious puberty // Clin. Exp. Pediatr. 2022. V. 65. № 4. P. 172–181. https://doi.org/10.3345/cep.2021.00521
  14. http://igc.otago.ac.nz – каталог импринтированных генов и родительских эффектов у человека и животных.
  15. Renfree M.B., Hore T.A., Shaw G. Evolution of genomic imprinting: Insights from marsupials and monotremes // Annu. Rev. Genomics Hum. Genet. 2009. V. 10. P. 241–262.
  16. Tucci V., Isles A.R., Kelsey G., Ferguson-Smith A.C. Genomic imprinting and physiological processes in mammals // Cell. 2019. V. 176. № 5. P. 952–965. https://doi.org/10.1016/j.cell.2019.01.043
  17. Eggermann T., Davies J.H., Tauber M. et al. Growth restriction and genomic imprinting-overlapping phenotypes support the concept of an imprinting network // Genes (Basel). 2021. V. 12. № 4. P. e585. https://doi.org/10.3390/genes12040585
  18. Canton A.P., Krepischi A.C., Montenegro L.R. et al. Insights from the genetic characterization of central precocious puberty associated with multiple anomalies // Hum. Reprod. 2021. V. 36. № 2. P. 506–518. https://doi.org/10.1093/humrep/deaa306
  19. Fontana L., Bedeschi M.F., Maitz S. et al. Characterization of multi-locus imprinting disturbances and underlying genetic defects in patients with chromosome 11p15.5 related imprinting disorders // Epigenetics. 2018. V. 13. № 9. P. 897–909. https://doi.org/10.1080/15592294.2018.1514230
  20. Sparago A., Verma A., Patricelli M.G. et al. The phenotypic variations of multi-locus imprinting disturbances associated with maternal-effect variants of NLRP5 range from overt imprinting disorder to apparently healthy phenotype // Clin. Epigenetics. 2019. V. 11. P. e190. https://doi.org/10.1186/s13148-019-0760-8
  21. Sazhenova E.A., Nikitina T.V., Vasilyev S.A. et al. NLRP7 variants in spontaneous abortions with multilocus imprinting disturbances from women with recurrent pregnancy loss // J. Assist. Reprod. Genet. 2021. V. 38. № 11. P. 2893–2908. https://doi.org/10.1007/s10815-021-02312-z
  22. Faienza M.F., Urbano F., Moscogiuri L.A. et al. Genetic, epigenetic and enviromental influencing factors on the regulation of precocious and delayed puberty // Front. Endocrinol. (Lausanne). 2022. V. 13. P. e1019468. https://doi.org/10.3389/fendo.2022.1019468
  23. Brito V.N., Canton A.P., Seraphim C.E. et al. The congenital and acquired mechanisms implicated in the etiology of central precocious puberty // Endocr. Rev. 2023. V. 44. № 2. P. 193–221. https://doi.org/10.1210/endrev/bnac020
  24. Cantas-Orsdemir S., Garb J.L., Allen H.F. Prevalence of cranial MRI findings in girls with central precocious puberty: A systematic review and meta-analysis // J. Pediatr. Endocrinol. Metab. 2018. V. 31. № 7. P. 701–710. https://doi.org/10.1515/jpem-2018-0052
  25. Imperial R., Toor O.M., Hussain A. et al. Comprehensive pancancer genomic analysis reveals (RTK)-RAS-RAF-MEK as a key dysregulated pathway in cancer: its clinical implications // Semin. Cancer Biol. 2019. V. 54. P. 14–28. https://doi.org/10.1016/j.semcancer.2017.11.016
  26. Savas Erdeve S., Ocal G., Berberoglu M. et al. The endocrine spectrum of intracranial cysts in childhood and review of the literature // J. Pediatr. Endocrinol. Metab. 2011. V. 24. № 11–12. P. 867–875. https://doi.org/10.1515/jpem.2011.263
  27. Almutlaq N., O’Neil J., Fuqua J.S. Central precocious puberty in spina bifida children: guidelines for the care of people with spina bifida // J. Pediatr. Rehabil. Med. 2020. V. 13. № 4. P. 557–563.
  28. Vurallı D., Ozon A., Gonc E.N. et al. Gender-related differences in etiology of organic central precocious puberty // Turk. J. Pediatr. 2020. V. 62. № 5. P. 763–769. https://doi.org/10.24953/turkjped.2020.05.007
  29. Фархутдинова Л.М. Преждевременное половое созревание центрального происхождения // Архив внутренней медицины. 2017. № 4. С. 245–251.
  30. Витебская А.В., Амшинская Д.Р., Шуминов О.В. Гонадотропинзависмое преждевременное половое созревание у девочек. Описание клинических случаев // Сеченовский вестник. 2017. Т. 1. № 27. С. 36–40.
  31. Gangat M., Radovick S. Precocious puberty // Minerva Pediatr. 2020. V. 72. № 6. P. 491–500. https://doi.org/10.23736/S0026-4946.20.05970-8
  32. Campbell R.E., Coolen L.M., Hoffman G.E., Hrabovszky E. Highlights of neuroanatomical discoveries of the mammalian gonadotropin-releasing hormone system // J. Neuroendocrinol. 2022. V. 34. № 5. P. e13115. https://doi.org/10.1111/jne.13115
  33. Vazquez M.J., Toro C.A., Castellano J.M et al. SIRT1 mediates obesity- and nutrient-dependent perturbation of pubertal timing by epigenetically controlling Kiss1 expression // Nat. Commun. 2018. V. 9. № 1. P. e4194. https://doi.org/10.1038/s41467-018-06459-9
  34. De Roux N., Genin E., Carel J.C. et al. Hypogonadotropic hypogonadism due to loss of function of the KiSS1-derived peptide receptor GPR54 // Proc. Natl Acad. Sci. USA. 2003. V. 100. № 19. P. 10972–10976.
  35. Seminara S.B., Messager S., Chatzidaki E.E. et al. The GPR54 gene as a regulator of puberty // N. Engl. J. Med. 2003. V. 349. № 17. P. 1614–1627.
  36. Teles M.G., Bianco S.D., Brito V.N. et al. AGPR54-activating mutation in a patient with central precocious puberty // N. Engl. J. Med. 2008. V. 358. № 7. P. 709–715.
  37. Pagani S., Calcaterra V., Acquafredda G. et al. MKRN3 and KISS1R mutations in precocious and early puberty // Ital. J. Pediatr. 2020. V. 46. № 1. P. e39. https://doi.org/10.1186/s13052-020-0808-6
  38. Hu K.L., Chang H.M., Zhao H.C. et al. Potential roles for the kisspeptin/kisspeptin receptor system in implantation and placentation // Hum. Reprod. Update. 2019. V. 25. № 3. P. 326–343. https://doi.org/10.1093/humupd/dmy046
  39. Abreu A.P., Toro C.A., Song Y.B. et al. MKRN3 inhibits the reproductive axis through actions in kisspeptin-expressing neurons // J. Clin. Invest. 2020. V. 130. № 8. P. 4486–4500. https://doi.org/10.1172/JCI136564
  40. Gomes L.G., Cunha-Silva M., Crespo R.P. et al. DLK1 is a novel link between reproduction and metabolism // J. Clin. Endocrinol. Metab. 2019. V. 104. № 6. P. 2112–2120.
  41. Perry J.R., Day F., Elks C.E. et al. Parent-of-origin specific allelic associations among 106 genomic loci for age at menarche // Nature. 2014. V. 514. P. 92–97.
  42. Dauber A., Cunha-Silva M., Macedo D.B. et al. Paternally inherited DLK1 deletion associated with familial central precocious puberty // J. Clin. Endocrinol. Metab. 2017. V. 102. № 5. P. 1557–1567. https://doi.org/10.1210/jc.2016-3677
  43. Moon Y.S., Smas C.M., Lee K. et al. Mice lacking paternally expressed Pref-1/Dlk1 display growth retardation and accelerated adiposity // Mol. Cell. Biol. 2002. V. 22. № 15. P. 5585–5592. https://doi.org/10.1128/MCB.22.15.5585-5592.2002
  44. Li C., Han T., Li Q. et al. MKRN3-mediated ubiquitination of Poly(A)-binding proteins modulates the stability and translation of GNRH1 mRNA in mammalian puberty // Nucl. Acids Res. 2021. V. 49. № 7. P. 3796–3813.
  45. Yellapragada V., Liu X., Lund C. et al. MKRN3 interacts with several proteins implicated in puberty timing but does not influence GNRH1 expression // Front. Endocrinol. (Lausanne). 2019. V. 10. P. e48. https://doi.org/10.3389/fendo.2019.00048
  46. Garcia J.P., Guerriero K.A., Keen K.L. et al. Kisspeptin and neurokinin B signaling network underlies the pubertal increase in GnRH release in female rhesus monkeys // Endocrinology. 2017. V. 158. № 10. P. 3269–3280. https://doi.org/10.1210/en.2017-00500
  47. Kanber D., Giltay J., Wieczorek D. et al. A paternal deletion of MKRN3, MAGEL2 and NDN does not result in Prader–Willi syndrome // Eur. J. Hum. Genet. 2009. V. 17. № 5. P. 582–590.
  48. Jeong H.R., Lee H.J., Shim Y.S. et al. Serum Makorin ring finger protein 3 values for predicting Central precocious puberty in girls // Gynecol. Endocrinol. 2019. V. 35. P. 732–736. https://doi.org/10.1080/09513590.2019.1576615
  49. Fanis P., Skordis N., Toumba M. et al. Central precocious puberty caused by novel mutations in the promoter and 5′-UTR region of the imprinted MKRN3 // Front. Endocrinol. (Lausanne). 2019. V. 10. P. e677. https://doi.org/10.3389/fendo.2019.00677
  50. Maione L., Naule L., Kaiser U.B. Makorin RING finger protein 3 and central precocious puberty // Curr. Opin. Endocr. Metab. Res. 2020. V. 14. P. 152–159. https://doi.org/10.1016/j.coemr.2020.08.003
  51. Aycan Z., Savas-Erdeve S., Çetinkaya S. et al. Investigation of MKRN3 mutation in patients with familial central precocious puberty // J. Clin. Res. Pediatr. Endocrinol. 2018. V. 10. P. e223–e229. https://doi.org/10.4274/jcrpe.5506
  52. Зубкова Н.А., Колодкина А.А., Макрецкая Н.А. и др. Клиническая и молекулярно-генетическая характеристика 3 семейных случаев гонадотропинзависимого преждевременного полового развития, обусловленного мутациями в гене MKRN3 // Проблемы эндокринологии. 2021. Т. 7. № 3. С. 55–61.
  53. Patti G., Malerba F., Calevo M.G. et al. Pubertal timing in children with Silver–Russell syndrome compared to those born small for gestational age // Front. Endocrinol. (Lausanne). 2022. V. 24. № 13. P. e975511. https://doi.org/10.3389/fendo.2022.975511
  54. Ioannides Y., Lokulo-Sodipe K., Mackay D. et al. Temple syndrome: Improving the recognition of an underdiagnosed chromosome 14 imprinting disorder: an analysis of 51 published cases // J. Med. Genet. 2014. V. 51. P. 495–501.
  55. Juriaans A.F., Kerkhof G.F., Mahabier E.F. et al. Syndrome: Clinical findings, body composition and cognition in 15 patients // J. Clin. Med. 2022. V. 11. № 21. P. e6289. https://doi.org/10.3390/jcm11216289
  56. Flippo C., Kolli V., Andrew M. et al. Precocious puberty in a boy with bilateral leydig cell tumors due to a somatic gain-of-function LHCGR variant // J. Endocr. Soc. 2022. V. 6. P. e10. https://doi.org/10.1210/jendso/bvac127
  57. Partsch C.J., Japing I., Siebert R. et al. Central precocious puberty in girls with Williams syndrome // J. Pediatr. 2002. V. 141. № 3. P. 441–444.
  58. Kozel B.A., Barak B., Kim C.A. et al. Williams syndrome // Nat. Rev. Dis. Primers. 2021. V. 7. № 1. P. e42. https://doi.org/10.1038/s41572-021-00276-z
  59. Nizon M., Andrieux J., Rooryck C. et al. Phenotype-genotype correlations in 17 new patients with an Xp11.23p11.22 microduplication and review of the literature // Am. J. Med. Genet. A. 2015. V. 167A. № 1. P. 111–122. https://doi.org/10.1002/ajmg.a.36807
  60. Smith A., Leask K., Tomlin P., Donnai D. A familial dysmorphic condition with hypotonia, seizures and precocious puberty // Clin. Dysmorph. 2008. V. 17. P. 161–164.
  61. Luckie T.M., Danzig M., Zhou S. et al. A multicenter retrospective review of pediatric Leydig cell tumor of the testis // J. Pediatr. Hematol. Oncol. 2019. V. 41. № 1. P. 74–76. https://doi.org/10.1097/mph.0000000000001124
  62. Menon K.M., Menon B. Structure, function and regulation of gonadotropin receptors – a perspective // Mol. Cell. Endocrinol. 2012. V. 356. № 1–2. P. 88–97. https://doi.org/10.1016/j.mce.2012.01.021
  63. Lomniczi A., Ojeda S.R. The emerging role of epigenetics in the regulation of female puberty // Endocr. Dev. 2016. V. 29. P. 1–16. https://doi.org/10.1159/000438840
  64. Feinberg A.P. The key role of epigenetics in human disease prevention and mitigation // N. Engl. J. Med. 2018. V. 378. № 14. P. 1323–1334. https://doi.org/10.1056/NEJMra1402513
  65. Wright H., Aylwin C.F., Toro C.A. et al. Polycomb represses a gene network controlling puberty via modulation of histone demethylase Kdm6b expression // Sci. Rep. 2021. V. 11. № 1. P. e1996. https://doi.org/10.1038/s41598-021-81689-4
  66. Lomniczi A., Wright H., Castellano J.M. et al. Epigenetic regulation of puberty via zinc finger protein-mediated transcriptional repression // Nat. Commun. 2015. V. 6. P. e10195. https://doi.org/10.1038/ncomms10195
  67. Toro C.A., Wright H., Aylwin C.F. et al. Trithorax dependent changes in chromatin landscape at enhancer and promoter regions drive female puberty // Nat. Commun. 2018. V. 9. № 1. P. e57. https://doi.org/10.1038/s41467-017-02512-1
  68. Messina A., Langlet F., Chachlaki K. et al. A microRNA switch regulates the rise in hypothalamic GnRH production before puberty // Nat. Neurosci. 2016. V. 19. № 6. P. 835–844. https://doi.org/10.1038/nn.4298
  69. Heras V., Sangiao-Alvarellos S., Manfredi-Lozano M. et al. Hypothalamic miR-30 regulates puberty onset via repression of the puberty-suppressing factor Mkrn3 // PLoS Biol. 2019. V. 17. № 11. P. e3000532. https://doi.org/10.1371/journal.pbio.3000532
  70. Canton A.P., Krepischi A.C., Montenegro L.R. et al. Insights from the genetic characterization of central precocious puberty associated with multiple anomalies // Hum. Reprod. 2021. V. 25. № 36. P. 506–518. https://doi.org/10.1093/humrep/deaa306
  71. Le Goff L.J., Cachin O., Rappaport R. Precocious puberty associated with Silver’s syndrome // Arch. Fr. Pediatr. 1977. V. 34. № 9. P. 899–905.
  72. Wakeling E.L., Brioude F., Lokulo-Sodipe O. et al. Diagnosis and management of Silver–Russell syndrome: first international consensus statement // Nat. Rev. Endocrinol. 2017. V. 13. № 2. P. 105–124. https://doi.org/10.1038/nrendo.2016.138
  73. Grosvenor S.E., Davies J.H., Lever M. et al. A patient with multilocus imprinting disturbance involving hypomethylation at 11p15 and 14q32, and phenotypic features of Beckwith–Wiedemann and Temple syndromes // Am. J. Med. Genet. A. 2022. V. 188. № 6. P. 1896–1903. https://doi.org/10.1002/ajmg.a.62717
  74. Docherty L.E., Rezwan F.I., Poole R.L. Mutations in NLRP5 are associated with reproductive wastage and multilocus imprinting disorders in humans // Nat. Commun. 2015. V. 6. P. e8086. https://doi.org/10.1038/ncomms9086
  75. Саженова Е.А., Никитина Т.В., Скрябин Н.А. и др. Эпигенетический статус импринтированных генов в плаценте при привычном невынашивании беременности // Генетика. 2017. Т. 53. № 3. С. 364–377. https://doi.org/10.7868/S0016675817020096
  76. Anvar Z., Chakchouk I., Demond H. et al. DNA methylation dynamics in the female germline and maternal-effect mutations that disrupt genomic imprinting // Genes (Basel). 2021. V. 12. № 8. P. e1214. https://doi.org/10.3390/genes12081214
  77. Pignata L., Cecere F., Verma A. et al. Novel genetic variants of KHDC3L and other members of the subcortical maternal complex associated with Beckwith–Wiedemann syndrome or Pseudohypoparathyroidism 1B and multi-locus imprinting // Clin. Epigenetics. 2022. V. 14. P. e71. https://doi.org/10.1186/s13148-022-01292-w
  78. Begemann M., Rezwan F.I., Beygo J. et al. Maternal variants in NLRP and other maternal effect proteins are associated with multilocus imprinting disturbance in offspring // J. Med. Genet. 2018. V. 55. № 7. P. 497–504. https://doi.org/10.1136/jmedgenet-2017-105190
  79. Monteagudo-Sanchez A., Hernandez Mora J.R., Simon C. et al. The role of ZFP57 and additional KRAB-zinc finger proteins in the maintenance of human imprinted methylation and multi-locus imprinting disturbances // Nucl. Acids Res. 2020. V. 48. № 20. P. 11394–11407. https://doi.org/10.1093/nar/gkaa837
  80. Bessa D.S., Maschietto M., Aylwin C.F. et al. Methylome profiling of healthy and central precocious puberty girls // Clin. Epigenetics. 2018. V. 10. № 1. P. e146. https://doi.org/10.1186/s13148-018-0581-1
  81. Holland A., Manning K., Whittington J. The paradox of Prader–Willi syndrome revisited: Making sense of the phenotype // EBioMedicine. 2022. V. 78. P. e103952. https://doi.org/10.1016/j.ebiom.2022.103952

Copyright (c) 2023 Е.А. Саженова, С.А. Васильев, Л.В. Рычкова, Е.Е. Храмова, И.Н. Лебедев

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies