Changes in Lifespan as an Integral Response to the Organism’s Immune Status and Mobile Elements Activity

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

One of the key goals in studying the molecular and genetic basis of many pathologies is to find triggers, which could positively influence the incidence of age-dependent diseases and the rate of aging in general. A possible cause of age-dependent degradation of the organism functions inducing aging is immunosenescence. It is known that the increased activity of mobile elements observed with age may not only affect the level of genome stability, but also play a crucial role in the development of immune response. At the same time, the pivotal role of the nervous system in controlling lifespan has long been proven, and recently it has been shown that components of the machinery that regulate mobile element activity do function in the nervous system, and their functioning affects the development of neurodegenerative diseases. This mini-review presents evidence for complex aging regulation by the nervous and immune systems, involving systems that control mobile element activity and proposes a hypothetical scheme for their joint impact on lifespan.

About the authors

M. V. Trostnikov

National Research Center “Kurchatov Institute”; Skolkovo Institute of Science and Technology

Author for correspondence.
Email: mikhail.trostnikov@gmail.com
Russia, 123182, Moscow; Russia, 121205, Moscow oblast, Skolkovo

D. R. Malyshev

National Research Center “Kurchatov Institute”

Email: mikhail.trostnikov@gmail.com
Russia, 123182, Moscow

E. G. Pasyukova

National Research Center “Kurchatov Institute”

Email: mikhail.trostnikov@gmail.com
Russia, 123182, Moscow

References

  1. Kirkwood T.B.L. Deciphering death: a commentary on Gompertz (1825) ‘On the nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies’ // Philos. Trans. Royal Soc. B Biol. Sci. 2015. V. 370. № 1666. P. 20140379. https://doi.org/10.1098/rstb.2014.0379
  2. Liochev S.I. Which is the most significant cause of aging? // Antioxidants (Basel). 2015. V. 4. № 4. P. 793–810. https://doi.org/10.3390/antiox4040793
  3. López-Otín C., Blasco M.A., Partridge L. et al. Hallmarks of aging: an expanding universe // Cell. 2023. V. 186. № 2. P. 243–278. https://doi.org/10.1016/j.cell.2022.11.001
  4. Guo J., Huang X., Dou L. et al. Aging and aging-related diseases: from molecular mechanisms to interventions and treatments: 1 // Sig. Transduct. Target Ther. 2022. V. 7. № 1. P. 1–40. https://doi.org/10.1038/s41392-022-01251-0
  5. Yu M., Zhang H., Wang B. et al. Key signaling pathways in aging and potential interventions for healthy aging: 3 // Cells Multidisciplinary Digital Publ. Inst. 2021. V. 10. № 3. P. 660. https://doi.org/10.3390/cells10030660
  6. Mogilenko D.A., Shchukina I., Artyomov M.N. Immune ageing at single-cell resolution: 8 // Nat. Rev. Immunol. 2022. V. 22. № 8. P. 484–498. https://doi.org/10.1038/s41577-021-00646-4
  7. Gan T., Fan L., Zhao L. et al. JNK signaling in Drosophila aging and longevity: 17 // Int. J. Mol. Sci. 2021. V. 22. № 17. P. 9649. https://doi.org/10.3390/ijms22179649
  8. Hayat R., Manzoor M., Hussain A. Wnt signaling pathway: A comprehensive review // Cell Biol. International. 2022. V. 46. № 6. P. 863–877. https://doi.org/10.1002/cbin.11797
  9. Fabian D.K., Fuentealba M., Dönertaş H.M. et al. Functional conservation in genes and pathways linking ageing and immunity // Immunity & Ageing. 2021. V. 18. № 1. P. 23. https://doi.org/10.1186/s12979-021-00232-1
  10. Fabian D.K., Garschall K., Klepsatel P. et al. Evolution of longevity improves immunity in Drosophila // Evol. Letters. 2018. V. 2. № 6. P. 567–579. https://doi.org/10.1002/evl3.89
  11. Mafi S., Mansoori B., Taeb S. et al. mTOR-mediated regulation of immune responses in cancer and tumor microenvironment // Front. in Immunology. 2022. V. 12. https://doi.org/10.3389/fimmu.2021.774103
  12. Kircheis R., Planz O. The role of Toll-like receptors (TLRs) and their related signaling pathways in viral infection and inflammation // Int. J. Mol. Sci. 2023. V. 24. № 7. https://doi.org/10.3390/ijms24076701
  13. Haseeb M., Pirzada R.H., Ain Q.U. et al. Wnt signaling in the regulation of immune cell and cancer therapeutics // Cells. 2019. V. 8. № 11. https://doi.org/10.3390/cells8111380
  14. Duan T., Du Y., Xing C. et al. Toll-like receptor signaling and its role in cell-mediated immunity // Front. Immunology. 2022. V. 13. https://doi.org/10.3389/fimmu.2022.812774
  15. Lemaitre B., Nicolas E., Michaut L. et al. The dorsoventral regulatory gene cassette spätzle/Toll/cactus controls the potent antifungal response in Drosophila adults // Cell. 1996. V. 86. № 6. P. 973–983. https://doi.org/10.1016/s0092-8674(00)80172-5
  16. Medzhitov R., Preston-Hurlburt P., Janeway C.A. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity // Nature. 1997. V. 388. № 6640. P. 394–397. https://doi.org/10.1038/41131
  17. Salminen A., Kaarniranta K., Kauppinen A. Insulin/IGF-1 signaling promotes immunosuppression via the STAT3 pathway: Impact on the aging process and age-related diseases // Inflamm. Res. 2021. V. 70. № 10–12. P. 1043–1061. https://doi.org/10.1007/s00011-021-01498-3
  18. Kubiak M., Tinsley M.C. Sex-specific routes to immune senescence in Drosophila melanogaster: 1 // Sci. Rep. 2017. V. 7. № 1. P. 10417. https://doi.org/10.1038/s41598-017-11021-6
  19. Yu S., Luo F., Xu Y. et al. Drosophila innate immunity involves multiple signaling pathways and coordinated communication between different tissues // Front. Immunology. 2022. V. 13
  20. Nüsslein-Volhard C. The Toll gene in Drosophila pattern formation // Trends in Genet. Elsevier. 2022. V. 38. № 3. P. 231–245. https://doi.org/10.1016/j.tig.2021.09.006
  21. Boulet M., Renaud Y., Lapraz F. et al. Characterization of the Drosophila adult hematopoietic system reveals a rare cell population with differentiation and proliferation potential // Frontiers in Cell and Developmental Biology. 2021. V. 9.
  22. Sanchez Bosch P., Makhijani K., Herboso L. et al. Adult Drosophila lack hematopoiesis but rely on a blood cell reservoir at the respiratory epithelia to relay infection signals to surrounding tissues // Dev. Cell. 2019. V. 51. № 6. P. 787–803.e5. https://doi.org/10.1016/j.devcel.2019.10.017
  23. Ventura M.T., Casciaro M., Gangemi S. et al. Immunosenescence in aging: between immune cells depletion and cytokines up-regulation // Clin. Mol. Allergy. 2017. V. 15. https://doi.org/10.1186/s12948-017-0077-0
  24. Sadighi Akha A.A. Aging and the immune system: An overview // J. Immunol. Meth. 2018. V. 463. P. 21–26. https://doi.org/10.1016/j.jim.2018.08.00
  25. Badinloo M., Nguyen E., Suh W. et al. Over-expression of antimicrobial peptides contributes to aging through cytotoxic effects in Drosophila tissues // Arch. Insect Biochem. Physiol. 2018. V. 98. № 4. https://doi.org/10.1002/arch.21464
  26. Lucin K.M., Wyss-Coray T. Immune activation in brain aging and neurodegeneration: too much or too little? // Neuron. 2009. V. 64. № 1. P. 110–122. https://doi.org/10.1016/j.neuron.2009.08.039
  27. Sanuki R., Tanaka T., Suzuki F. et al. Normal aging hyperactivates innate immunity and reduces the medical efficacy of minocycline in brain injury // Brain, Behavior, and Immunity. 2019. V. 80. P. 427–438. https://doi.org/10.1016/j.bbi.2019.04.023
  28. Weyand C.M., Goronzy J.J. Aging of the immune system. Mechanisms and therapeutic targets // Ann. Am. Thorac. Soc. 2016. V. 13. Suppl. 5. P. S422–S428. https://doi.org/10.1513/AnnalsATS.201602-095AW
  29. Lee K.-A., Flores R.R., Jang I.H. et al. Immune senescence, immunosenescence and aging // Frontiers in Aging. 2022. V. 3.
  30. Koonin E.V., Krupovic M. Evolution of adaptive immunity from transposable elements combined with innate immune systems: 3 // Nat. Rev. Genet. 2015. V. 16. № 3. P. 184–192. https://doi.org/10.1038/nrg3859
  31. Broecker F., Moelling K. Evolution of immune systems from viruses and transposable elements // Frontiers in Microbiology. 2019. V. 10.
  32. Gázquez-Gutiérrez A., Witteveldt J., Heras S.R. et al. Sensing of transposable elements by the antiviral innate immune system // RNA. 2021. V. 27. № 7. P. 735–752. https://doi.org/10.1261/rna.078721.121
  33. Li W., Prazak L., Chatterjee N. et al. Activation of transposable elements during aging and neuronal decline in Drosophila // Nat. Neurosci. 2013. V. 16. № 5. P. 529–531. https://doi.org/10.1038/nn.3368
  34. Van Meter M., Kashyap M., Rezazadeh S. et al. SIRT6 represses LINE1 retrotransposons by ribosylating KAP1 but this repression fails with stress and age // Nat. Commun. 2014. V. 5. https://doi.org/10.1038/ncomms6011
  35. Brunet T.D.P., Doolittle W.F. Multilevel selection theory and the evolutionary functions of transposable elements // Genome Biol. Evol. 2015. V. 7. № 8. P. 2445–2457. https://doi.org/10.1093/gbe/evv152
  36. Santos D., Verdonckt T.-W., Mingels L. et al. PIWI proteins play an antiviral role in lepidopteran cell lines // Viruses. 2022. V. 14. № 7. https://doi.org/10.3390/v14071442
  37. Kolliopoulou A., Santos D., Taning C.N.T. et al. PIWI pathway against viruses in insects // WIREs RNA. 2019. V. 10. № 6. https://doi.org/10.1002/wrna.1555
  38. Takahashi T., Heaton S.M., Parrish N.F. Mammalian antiviral systems directed by small RNA // PLoS Pathogens Publ.Library of Sci. 2021. V. 17. № 12. https://doi.org/10.1371/journal.ppat.1010091
  39. Rolland A., Jouvin-Marche E., Viret C. et al. The envelope protein of a human endogenous retrovirus-W family activates innate immunity through CD14/TLR4 and promotes Th1-like responses // J. Immunol. 2006. V. 176. № 12. P. 7636–7644. https://doi.org/10.4049/jimmunol.176.12.7636
  40. López-Otín C., Blasco M.A., Partridge L. et al. The hallmarks of aging // Cell. 2013. V. 153. № 6. P. 1194–1217. https://doi.org/10.1016/j.cell.2013.05.039
  41. Moskalev A.A., Shaposhnikov M.V., Plyusnina E.N. et al. The role of DNA damage and repair in aging through the prism of Koch-like criteria // Ageing Res. Rev. 2013. V. 12. № 2. P. 661–684. https://doi.org/10.1016/j.arr.2012.02.001
  42. Iwasaki Y.W., Siomi M.C., Siomi H. PIWI-Interacting RNA: Its biogenesis and functions // Annu. Rev. Biochem. 2015. V. 84. P. 405–433. https://doi.org/10.1146/annurev-biochem-060614-034258
  43. Chen H., Zheng X., Xiao D. et al. Age-associated de-repression of retrotransposons in the Drosophila fat body, its potential cause and consequence // Aging Cell. 2016. V. 15. № 3. P. 542–552. https://doi.org/10.1111/acel.12465
  44. Cecco M.D., Criscione S.W., Peterson A.L. et al. Transposable elements become active and mobile in the genomes of aging mammalian somatic tissues // Aging. 2013. V. 5. № 12. P. 867–883. https://doi.org/10.18632/aging.100621
  45. Lin K.-Y., Wang W.-D., Lin C.-H. et al. Piwi reduction in the aged niche eliminates germline stem cells via Toll-GSK3 signaling: 1 // Nat. Commun. 2020. V. 11. № 1. P. 3147. https://doi.org/10.1038/s41467-020-16858-6
  46. Rolland A., Jouvin-Marche E., Saresella M. et al. Correlation between disease severity and in vitro cytokine production mediated by MSRV (multiple sclerosis associated retroviral element) envelope protein in patients with multiple sclerosis // J. Neuroimmunol. 2005. V. 160. № 1–2. P. 195–203. https://doi.org/10.1016/j.jneuroim.2004.10.019
  47. De Cecco M., Ito T., Petrashen A.P. et al. L1 drives IFN in senescent cells and promotes age-associated inflammation // Nature. 2019. V. 566. № 7742. P. 73–78. https://doi.org/10.1038/s41586-018-0784-9
  48. Wang L., Tracy L., Su W. et al. Retrotransposon activation during Drosophila metamorphosis conditions adult antiviral responses: 12 // Nat. Genet. 2022. V. 54. № 12. P. 1933–1945. https://doi.org/10.1038/s41588-022-01214-9
  49. Dantzer R. Neuroimmune interactions: from the brain to the immune system and vice versa // Physiol. Rev. 2018. V. 98. № 1. P. 477–504. https://doi.org/10.1152/physrev.00039.2016
  50. Daëron M. The immune system as a system of relations // Front. Immunol. 2022. V. 13. https://doi.org/10.3389/fimmu.2022.984678
  51. Kawli T., He F., Tan M.-W. It takes nerves to fight infections: insights on neuro-immune interactions from C. elegans // Disease Models & Mechanisms. 2010. V. 3. № 11–12. P. 721–731. https://doi.org/10.1242/dmm.003871
  52. Shukla A.K., Spurrier J., Kuzina I. et al. Hyperactive innate immunity causes degeneration of dopamine neurons upon altering activity of Cdk5 // Cell Rep. 2019. V. 26. № 1. P. 131–144.e4. https://doi.org/10.1016/j.celrep.2018.12.025
  53. Kounatidis I., Chtarbanova S. Role of glial immunity in lifespan determination: A Drosophila perspective // Front. Immunol. 2018. V. 9. https://doi.org/10.3389/fimmu.2018.01362
  54. Otarigho B., Aballay A. Immunity-longevity tradeoff neurally controlled by GABAergic transcription factor PITX1/UNC-30 // bioRxiv. Cold Spring Harbor Lab. 2021. https://doi.org/10.1101/2021.02.25.432801
  55. Tindell S.J., Rouchka E.C., Arkov A.L. Glial granules contain germline proteins in the Drosophila brain, which regulate brain transcriptome: 1 // Commun. Biol. 2020. V. 3. № 1. P. 1–12. https://doi.org/10.1038/s42003-020-01432-z
  56. Qiu W., Guo X., Lin X. et al. Transcriptome-wide piRNA profiling in human brains of Alzheimer’s disease // Neurobiol. Aging. 2017. V. 57. P. 170–177. https://doi.org/10.1016/j.neurobiolaging.2017.05.020
  57. Schulze M., Sommer A., Plötz S. et al. Sporadic Parkinson’s disease derived neuronal cells show disease-specific mRNA and small RNA signatures with abundant deregulation of piRNAs // Acta Neuropathol. Commun. 2018. V. 6. № 1. P. 58. https://doi.org/10.1186/s40478-018-0561-x
  58. Wakisaka K.T., Tanaka R., Hirashima T. et al. Novel roles of Drosophila FUS and Aub responsible for piRNA biogenesis in neuronal disorders // Brain Res. 2019. V. 1708. P. 207–219. https://doi.org/10.1016/j.brainres.2018.12.028
  59. Lathe R., St Clair D. Programmed ageing: Decline of stem cell renewal, immunosenescence, and Alzheimer’s disease // Biol. Rev. Camb. Philos. Soc. 2023. https://doi.org/10.1111/brv.12959
  60. Alcedo J., Flatt T., Pasyukova E.G. The role of the nervous system in aging and longevity // Front. Genet. 2013. V. 4. https://doi.org/10.3389/fgene.2013.00124

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (144KB)

Copyright (c) 2023 М.В. Тростников, Д.Р. Малышев, Е.Г. Пасюкова

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies