Изменение продолжительности жизни как интегральный ответ на иммунный статус организма и активность мобильных элементов

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Одной из ключевых задач при изучении молекулярно-генетических основ многих патологий является поиск триггеров, влияние на которые могло бы положительно сказаться на частоте возникновения зависимых от возраста заболеваний и в целом темпах старения. Возможной причиной зависимой от возраста деградации функций организма, индуцирующей старение, является иммуносенесцентность. Известно, что наблюдаемое с возрастом повышение активности мобильных элементов может не только влиять на уровень стабильности генома, но и играть ключевую роль в формировании иммунного ответа. В то же время давно доказана ключевая роль нервной системы в контроле продолжительности жизни, а недавно показано, что компоненты аппарата, регулирующего активность мобильных элементов, функционируют в нервной системе, и их работа влияет на развитие нейродегенеративных заболеваний. В мини-обзоре представлены факты, указывающие на комплексную регуляцию старения со стороны нервной и иммунной систем при участии систем контроля активности мобильных элементов и предложена гипотетическая схема их совместного влияния на продолжительность жизни.

Об авторах

М. В. Тростников

Национальный исследовательский центр “Курчатовский институт”; Сколковский институт науки и технологий

Автор, ответственный за переписку.
Email: mikhail.trostnikov@gmail.com
Россия, 123182, Москва; Россия, 121205, Московская область, Сколково

Д. Р. Малышев

Национальный исследовательский центр “Курчатовский институт”

Email: mikhail.trostnikov@gmail.com
Россия, 123182, Москва

Е. Г. Пасюкова

Национальный исследовательский центр “Курчатовский институт”

Email: mikhail.trostnikov@gmail.com
Россия, 123182, Москва

Список литературы

  1. Kirkwood T.B.L. Deciphering death: a commentary on Gompertz (1825) ‘On the nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies’ // Philos. Trans. Royal Soc. B Biol. Sci. 2015. V. 370. № 1666. P. 20140379. https://doi.org/10.1098/rstb.2014.0379
  2. Liochev S.I. Which is the most significant cause of aging? // Antioxidants (Basel). 2015. V. 4. № 4. P. 793–810. https://doi.org/10.3390/antiox4040793
  3. López-Otín C., Blasco M.A., Partridge L. et al. Hallmarks of aging: an expanding universe // Cell. 2023. V. 186. № 2. P. 243–278. https://doi.org/10.1016/j.cell.2022.11.001
  4. Guo J., Huang X., Dou L. et al. Aging and aging-related diseases: from molecular mechanisms to interventions and treatments: 1 // Sig. Transduct. Target Ther. 2022. V. 7. № 1. P. 1–40. https://doi.org/10.1038/s41392-022-01251-0
  5. Yu M., Zhang H., Wang B. et al. Key signaling pathways in aging and potential interventions for healthy aging: 3 // Cells Multidisciplinary Digital Publ. Inst. 2021. V. 10. № 3. P. 660. https://doi.org/10.3390/cells10030660
  6. Mogilenko D.A., Shchukina I., Artyomov M.N. Immune ageing at single-cell resolution: 8 // Nat. Rev. Immunol. 2022. V. 22. № 8. P. 484–498. https://doi.org/10.1038/s41577-021-00646-4
  7. Gan T., Fan L., Zhao L. et al. JNK signaling in Drosophila aging and longevity: 17 // Int. J. Mol. Sci. 2021. V. 22. № 17. P. 9649. https://doi.org/10.3390/ijms22179649
  8. Hayat R., Manzoor M., Hussain A. Wnt signaling pathway: A comprehensive review // Cell Biol. International. 2022. V. 46. № 6. P. 863–877. https://doi.org/10.1002/cbin.11797
  9. Fabian D.K., Fuentealba M., Dönertaş H.M. et al. Functional conservation in genes and pathways linking ageing and immunity // Immunity & Ageing. 2021. V. 18. № 1. P. 23. https://doi.org/10.1186/s12979-021-00232-1
  10. Fabian D.K., Garschall K., Klepsatel P. et al. Evolution of longevity improves immunity in Drosophila // Evol. Letters. 2018. V. 2. № 6. P. 567–579. https://doi.org/10.1002/evl3.89
  11. Mafi S., Mansoori B., Taeb S. et al. mTOR-mediated regulation of immune responses in cancer and tumor microenvironment // Front. in Immunology. 2022. V. 12. https://doi.org/10.3389/fimmu.2021.774103
  12. Kircheis R., Planz O. The role of Toll-like receptors (TLRs) and their related signaling pathways in viral infection and inflammation // Int. J. Mol. Sci. 2023. V. 24. № 7. https://doi.org/10.3390/ijms24076701
  13. Haseeb M., Pirzada R.H., Ain Q.U. et al. Wnt signaling in the regulation of immune cell and cancer therapeutics // Cells. 2019. V. 8. № 11. https://doi.org/10.3390/cells8111380
  14. Duan T., Du Y., Xing C. et al. Toll-like receptor signaling and its role in cell-mediated immunity // Front. Immunology. 2022. V. 13. https://doi.org/10.3389/fimmu.2022.812774
  15. Lemaitre B., Nicolas E., Michaut L. et al. The dorsoventral regulatory gene cassette spätzle/Toll/cactus controls the potent antifungal response in Drosophila adults // Cell. 1996. V. 86. № 6. P. 973–983. https://doi.org/10.1016/s0092-8674(00)80172-5
  16. Medzhitov R., Preston-Hurlburt P., Janeway C.A. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity // Nature. 1997. V. 388. № 6640. P. 394–397. https://doi.org/10.1038/41131
  17. Salminen A., Kaarniranta K., Kauppinen A. Insulin/IGF-1 signaling promotes immunosuppression via the STAT3 pathway: Impact on the aging process and age-related diseases // Inflamm. Res. 2021. V. 70. № 10–12. P. 1043–1061. https://doi.org/10.1007/s00011-021-01498-3
  18. Kubiak M., Tinsley M.C. Sex-specific routes to immune senescence in Drosophila melanogaster: 1 // Sci. Rep. 2017. V. 7. № 1. P. 10417. https://doi.org/10.1038/s41598-017-11021-6
  19. Yu S., Luo F., Xu Y. et al. Drosophila innate immunity involves multiple signaling pathways and coordinated communication between different tissues // Front. Immunology. 2022. V. 13
  20. Nüsslein-Volhard C. The Toll gene in Drosophila pattern formation // Trends in Genet. Elsevier. 2022. V. 38. № 3. P. 231–245. https://doi.org/10.1016/j.tig.2021.09.006
  21. Boulet M., Renaud Y., Lapraz F. et al. Characterization of the Drosophila adult hematopoietic system reveals a rare cell population with differentiation and proliferation potential // Frontiers in Cell and Developmental Biology. 2021. V. 9.
  22. Sanchez Bosch P., Makhijani K., Herboso L. et al. Adult Drosophila lack hematopoiesis but rely on a blood cell reservoir at the respiratory epithelia to relay infection signals to surrounding tissues // Dev. Cell. 2019. V. 51. № 6. P. 787–803.e5. https://doi.org/10.1016/j.devcel.2019.10.017
  23. Ventura M.T., Casciaro M., Gangemi S. et al. Immunosenescence in aging: between immune cells depletion and cytokines up-regulation // Clin. Mol. Allergy. 2017. V. 15. https://doi.org/10.1186/s12948-017-0077-0
  24. Sadighi Akha A.A. Aging and the immune system: An overview // J. Immunol. Meth. 2018. V. 463. P. 21–26. https://doi.org/10.1016/j.jim.2018.08.00
  25. Badinloo M., Nguyen E., Suh W. et al. Over-expression of antimicrobial peptides contributes to aging through cytotoxic effects in Drosophila tissues // Arch. Insect Biochem. Physiol. 2018. V. 98. № 4. https://doi.org/10.1002/arch.21464
  26. Lucin K.M., Wyss-Coray T. Immune activation in brain aging and neurodegeneration: too much or too little? // Neuron. 2009. V. 64. № 1. P. 110–122. https://doi.org/10.1016/j.neuron.2009.08.039
  27. Sanuki R., Tanaka T., Suzuki F. et al. Normal aging hyperactivates innate immunity and reduces the medical efficacy of minocycline in brain injury // Brain, Behavior, and Immunity. 2019. V. 80. P. 427–438. https://doi.org/10.1016/j.bbi.2019.04.023
  28. Weyand C.M., Goronzy J.J. Aging of the immune system. Mechanisms and therapeutic targets // Ann. Am. Thorac. Soc. 2016. V. 13. Suppl. 5. P. S422–S428. https://doi.org/10.1513/AnnalsATS.201602-095AW
  29. Lee K.-A., Flores R.R., Jang I.H. et al. Immune senescence, immunosenescence and aging // Frontiers in Aging. 2022. V. 3.
  30. Koonin E.V., Krupovic M. Evolution of adaptive immunity from transposable elements combined with innate immune systems: 3 // Nat. Rev. Genet. 2015. V. 16. № 3. P. 184–192. https://doi.org/10.1038/nrg3859
  31. Broecker F., Moelling K. Evolution of immune systems from viruses and transposable elements // Frontiers in Microbiology. 2019. V. 10.
  32. Gázquez-Gutiérrez A., Witteveldt J., Heras S.R. et al. Sensing of transposable elements by the antiviral innate immune system // RNA. 2021. V. 27. № 7. P. 735–752. https://doi.org/10.1261/rna.078721.121
  33. Li W., Prazak L., Chatterjee N. et al. Activation of transposable elements during aging and neuronal decline in Drosophila // Nat. Neurosci. 2013. V. 16. № 5. P. 529–531. https://doi.org/10.1038/nn.3368
  34. Van Meter M., Kashyap M., Rezazadeh S. et al. SIRT6 represses LINE1 retrotransposons by ribosylating KAP1 but this repression fails with stress and age // Nat. Commun. 2014. V. 5. https://doi.org/10.1038/ncomms6011
  35. Brunet T.D.P., Doolittle W.F. Multilevel selection theory and the evolutionary functions of transposable elements // Genome Biol. Evol. 2015. V. 7. № 8. P. 2445–2457. https://doi.org/10.1093/gbe/evv152
  36. Santos D., Verdonckt T.-W., Mingels L. et al. PIWI proteins play an antiviral role in lepidopteran cell lines // Viruses. 2022. V. 14. № 7. https://doi.org/10.3390/v14071442
  37. Kolliopoulou A., Santos D., Taning C.N.T. et al. PIWI pathway against viruses in insects // WIREs RNA. 2019. V. 10. № 6. https://doi.org/10.1002/wrna.1555
  38. Takahashi T., Heaton S.M., Parrish N.F. Mammalian antiviral systems directed by small RNA // PLoS Pathogens Publ.Library of Sci. 2021. V. 17. № 12. https://doi.org/10.1371/journal.ppat.1010091
  39. Rolland A., Jouvin-Marche E., Viret C. et al. The envelope protein of a human endogenous retrovirus-W family activates innate immunity through CD14/TLR4 and promotes Th1-like responses // J. Immunol. 2006. V. 176. № 12. P. 7636–7644. https://doi.org/10.4049/jimmunol.176.12.7636
  40. López-Otín C., Blasco M.A., Partridge L. et al. The hallmarks of aging // Cell. 2013. V. 153. № 6. P. 1194–1217. https://doi.org/10.1016/j.cell.2013.05.039
  41. Moskalev A.A., Shaposhnikov M.V., Plyusnina E.N. et al. The role of DNA damage and repair in aging through the prism of Koch-like criteria // Ageing Res. Rev. 2013. V. 12. № 2. P. 661–684. https://doi.org/10.1016/j.arr.2012.02.001
  42. Iwasaki Y.W., Siomi M.C., Siomi H. PIWI-Interacting RNA: Its biogenesis and functions // Annu. Rev. Biochem. 2015. V. 84. P. 405–433. https://doi.org/10.1146/annurev-biochem-060614-034258
  43. Chen H., Zheng X., Xiao D. et al. Age-associated de-repression of retrotransposons in the Drosophila fat body, its potential cause and consequence // Aging Cell. 2016. V. 15. № 3. P. 542–552. https://doi.org/10.1111/acel.12465
  44. Cecco M.D., Criscione S.W., Peterson A.L. et al. Transposable elements become active and mobile in the genomes of aging mammalian somatic tissues // Aging. 2013. V. 5. № 12. P. 867–883. https://doi.org/10.18632/aging.100621
  45. Lin K.-Y., Wang W.-D., Lin C.-H. et al. Piwi reduction in the aged niche eliminates germline stem cells via Toll-GSK3 signaling: 1 // Nat. Commun. 2020. V. 11. № 1. P. 3147. https://doi.org/10.1038/s41467-020-16858-6
  46. Rolland A., Jouvin-Marche E., Saresella M. et al. Correlation between disease severity and in vitro cytokine production mediated by MSRV (multiple sclerosis associated retroviral element) envelope protein in patients with multiple sclerosis // J. Neuroimmunol. 2005. V. 160. № 1–2. P. 195–203. https://doi.org/10.1016/j.jneuroim.2004.10.019
  47. De Cecco M., Ito T., Petrashen A.P. et al. L1 drives IFN in senescent cells and promotes age-associated inflammation // Nature. 2019. V. 566. № 7742. P. 73–78. https://doi.org/10.1038/s41586-018-0784-9
  48. Wang L., Tracy L., Su W. et al. Retrotransposon activation during Drosophila metamorphosis conditions adult antiviral responses: 12 // Nat. Genet. 2022. V. 54. № 12. P. 1933–1945. https://doi.org/10.1038/s41588-022-01214-9
  49. Dantzer R. Neuroimmune interactions: from the brain to the immune system and vice versa // Physiol. Rev. 2018. V. 98. № 1. P. 477–504. https://doi.org/10.1152/physrev.00039.2016
  50. Daëron M. The immune system as a system of relations // Front. Immunol. 2022. V. 13. https://doi.org/10.3389/fimmu.2022.984678
  51. Kawli T., He F., Tan M.-W. It takes nerves to fight infections: insights on neuro-immune interactions from C. elegans // Disease Models & Mechanisms. 2010. V. 3. № 11–12. P. 721–731. https://doi.org/10.1242/dmm.003871
  52. Shukla A.K., Spurrier J., Kuzina I. et al. Hyperactive innate immunity causes degeneration of dopamine neurons upon altering activity of Cdk5 // Cell Rep. 2019. V. 26. № 1. P. 131–144.e4. https://doi.org/10.1016/j.celrep.2018.12.025
  53. Kounatidis I., Chtarbanova S. Role of glial immunity in lifespan determination: A Drosophila perspective // Front. Immunol. 2018. V. 9. https://doi.org/10.3389/fimmu.2018.01362
  54. Otarigho B., Aballay A. Immunity-longevity tradeoff neurally controlled by GABAergic transcription factor PITX1/UNC-30 // bioRxiv. Cold Spring Harbor Lab. 2021. https://doi.org/10.1101/2021.02.25.432801
  55. Tindell S.J., Rouchka E.C., Arkov A.L. Glial granules contain germline proteins in the Drosophila brain, which regulate brain transcriptome: 1 // Commun. Biol. 2020. V. 3. № 1. P. 1–12. https://doi.org/10.1038/s42003-020-01432-z
  56. Qiu W., Guo X., Lin X. et al. Transcriptome-wide piRNA profiling in human brains of Alzheimer’s disease // Neurobiol. Aging. 2017. V. 57. P. 170–177. https://doi.org/10.1016/j.neurobiolaging.2017.05.020
  57. Schulze M., Sommer A., Plötz S. et al. Sporadic Parkinson’s disease derived neuronal cells show disease-specific mRNA and small RNA signatures with abundant deregulation of piRNAs // Acta Neuropathol. Commun. 2018. V. 6. № 1. P. 58. https://doi.org/10.1186/s40478-018-0561-x
  58. Wakisaka K.T., Tanaka R., Hirashima T. et al. Novel roles of Drosophila FUS and Aub responsible for piRNA biogenesis in neuronal disorders // Brain Res. 2019. V. 1708. P. 207–219. https://doi.org/10.1016/j.brainres.2018.12.028
  59. Lathe R., St Clair D. Programmed ageing: Decline of stem cell renewal, immunosenescence, and Alzheimer’s disease // Biol. Rev. Camb. Philos. Soc. 2023. https://doi.org/10.1111/brv.12959
  60. Alcedo J., Flatt T., Pasyukova E.G. The role of the nervous system in aging and longevity // Front. Genet. 2013. V. 4. https://doi.org/10.3389/fgene.2013.00124

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2.

Скачать (144KB)

© М.В. Тростников, Д.Р. Малышев, Е.Г. Пасюкова, 2023

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах