Genome-Wide Association Study: Analysis of Association of Polymorphic Loci in 4p15.2 and 20q13.31 Regions with Paranoid Schizophrenia

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Over fifteen years, genome-wide association studies (GWAS) have identified several million polymorphic risk markers for schizophrenia, significantly advancing our understanding of the genetic architecture of schizophrenia. The aim of this study was to study genetic risk factors for the development of schizophrenia in a genome-wide association analysis in Russians, Tatars, and Bashkirs from the Republic of Bashkortostan. The studied sample consisted of 816 patients with paranoid schizophrenia and 989 healthy individuals. GWAS genotyping of DNA samples was carried out on the PsychChip, which included 610 000 single nucleotide polymorphic variants (SNPs). As a result of the study, for the first time, an association of SNPs rs73254185 (4p15.2) and rs587778384 of the GNAS gene (20q13.31) with the risk of paranoid schizophrenia in individuals of different ethnicity, Russians, Tatars and Bashkirs living in the Republic of Bashkortostan, was established, which probably may indicate involvement of PI4K2B and GNAS genes localized in these chromosomal regions in the pathogenesis of schizophrenia.

About the authors

A. E. Gareeva

Institute of Biochemistry and Genetics, Ufa Federal Research Center of the Russian Academy of Sciences; Bashkir State Medical University

Author for correspondence.
Email: annagareeva@yandex.ru
Russia, 450054, Ufa; Russia, 450008, Ufa

References

  1. Trubetskoy V., Pardiñas A.F., Qi T. et al. Mapping genomic loci implicates genes and synaptic biology in schizophrenia // Nature. 2022. V. 604. № 7906. P. 502–508. https://doi.org/10.1038/s41586-022-04434-5
  2. Singh T., Poterba T., Curtis D. et al. Rare coding variants in ten genes confer substantial risk for schizophrenia // Nature. 2022. V. 604. P. 509–516. https://doi.org/10.1038/s41586-022-04556-w
  3. Periyasamy S., John S., Padmavati R. et al. Association of schizophrenia risk with disordered niacin metabolism in an Indian genome-wide association study // JAMA Psychiatry. 2019. V. 76. № 10. P. 1026–1034. https://doi.org/10.1001/jamapsychiatry.2019.1335
  4. Fiorica P.N., Wheeler H.E. Transcriptome association studies of neuropsychiatric traits in African Americans implicate PRMT7 in schizophrenia // Peer J. 2019. V. 26. № 7. https://doi.org/10.7717/peerj.7778
  5. Bigdeli T.B., Genovese G., Georgakopoulos P. et al. Contributions of common genetic variants to risk of schizophrenia among individuals of African and Latino ancestry // Mol. Psychiatry. 2020. V. 25. № 10. P. 2455–2467. https://doi.org/10.1038/s41380-019-0517-y
  6. Ikeda M., Takahashi A., Kamatani Y. et al. Genome-wide association study detected novel susceptibility genes for schizophrenia and shared trans-populations/diseases genetic effect // Schizophr. Bull. 2019. V. 45. № 4. P. 824–834. https://doi.org/10.1093/schbul/sby140
  7. Lam M., Chen C.Y., Li Z. et al. Comparative genetic architectures of schizophrenia in East Asian and European populations // Nat. Genet. 2019. V. 51. № 12. P. 1670–1678. https://doi.org/10.1038/s41588-019-0512-x
  8. Purcell S., Neale B., Todd-Brown K. et al. PLINK: A toolset for whole-genome association and population-based linkage analysis // Am. J. Hum. Genet. 2007. V. 81. № 3. P. 559–575. https://doi.org/10.1086/519795
  9. Benjamini Y., Drai D., Elmer G., Kafkafi N., Golani I. Controlling the false discovery rate in behavior genetics research // Behav. Brain Res. 2001. V. 125. № 1–2. P. 279–284. https://doi.org/10.1016/s0166-4328(01)00297-2
  10. Price A.L., Patterson N.J., Plenge R.M. et al. Principal components analysis corrects for stratification in genome–wide association studies // Nat. Genet. 2006. V. 38. № 8. P. 904–909. https://doi.org/10.1038/ng1847
  11. Kunii Y., Matsumoto J., Izumi R. et al. Evidence for altered phosphoinositide signaling-associated molecules in the postmortem prefrontal cortex of patients with schizophrenia // Int. J. Mol. Sci. 2021. V. 22. № 15. https://doi.org/10.3390/ijms22158280
  12. Yates A.D., Achuthan P., Akanni W. et al. Ensembl 2020 // Nucl. Ac. Res. 2020. V. 48. № D1. P. D682–D688. https://doi.org/10.1093/nar/gkz966
  13. Minogue S. The many roles of type ii phosphatidylinositol 4-kinases in membrane trafficking: New tricks for old dogs // Bioessays. 2018. V. 40. № 2. P. 10. https://doi.org/10.1002/bies.201700145
  14. Baba T., Alvarez-Prats A., Kim Y.J. et al. Myelination of peripheral nerves is controlled by PI4KB through regulation of Schwann cell Golgi function // Proc. Natl Acad. Sci. USA. 2020. V. 117. № 45. P. 28102–28113. https://doi.org/10.1073/pnas.2007432117
  15. Alvarez-Prats A., Bjelobaba I., Aldworth Z. et al. Schwanncell – specific deletion of phosphatidylinositol 4-kinase alpha causes aberrant myelination // Cell Rep. 2018. V. 23. № 10. P. 2881–2890. https://doi.org/10.1016/j.celrep.2018.05.019
  16. Dafsari H.S., Pemberton J.G., Ferrer E.A. et al. PI4K2A deficiency causes innate error in intracellular trafficking with developmental and epileptic-dyskinetic encephalopathy // Ann. Clin. Transl. Neurol. 2022. V.9. № 9. P. 1345–1358. https://doi.org/10.1002/acn3.51634
  17. Asherson P., Mant R., Williams N. et al. A study of chromosome 4p markers and dopamine D5 receptor gene in schizophrenia and bipolar disorder // Mol. Psychiatry. 1998. V. 3. № 4. P. 310–320. https://doi.org/10.1038/sj.mp.4000399
  18. Detera-Wadleigh S.D., Badner J.A., Berrettini W.H. et al. A high-density genome scan detects evidence for a bipolar-disorder susceptibility locus on 13q32 and other potential loci on 1q32 and 18p11.2 // Proc. Natl Acad. Sci. USA. 1999. V. 96. № 10. P. 5604–5609. https://doi.org/10.1073/pnas.96.10.5604
  19. Christoforou A., Le Hellard S., Thomson P.A. et al. Association analysis of the chromosome 4p15-p16 candidate region for bipolar disorder and schizophrenia // Mol. Psychiatry. 2007. V. 12. № 11. P. 1011–1025. https://doi.org/10.1038/sj.mp.4002003
  20. Le Hellard S., Theisen F.M., Haberhausen M. et al. Association between the insulin-induced gene 2 (INSIG2) and weight gain in a German sample of antipsychotic-treated schizophrenic patients: perturbation of SREBP–controlled lipogenesis in drug-related metabolic adverse effects? // Mol. Psychiatry. 2009. V. 14. № 3. P. 308–317. https://doi.org/10.1038/sj.mp.4002133
  21. McClay J.L., Adkins D.E., Aberg K. et al. Genome-wide pharmacogenomic study of neurocognition as an indicator of antipsychotic treatment response in schizophrenia // Neuropsychopharmacology. 2011. V. 36. № 3. P. 616–626. https://doi.org/10.1038/npp.2010.193
  22. Blackwood D.H., He L., Morris S.W. et al. A locus for bipolar affective disorder on chromosome 4p // Nat. Genet. 1996. V. 12. № 4. P. 427–430. https://doi.org/10.1038/ng0496-427
  23. Chen F.P., Wu L., Shen Y. et al. // Acta Acad. Med. Sinicae. 2014. V. 36. № 5. P. 466–469. https://doi.org/10.3881/j.issn.1000-503X.2014.05.002
  24. Sherva R., Wang Q., Kranzler H. et al. Genome-wide association study of cannabis dependence severity, novel risk variants, and shared genetic risks // JAMA Psychiatry. 2016. V. 73. № 5. P. 472–480. https://doi.org/10.1001/jamapsychiatry.2016.0036
  25. Houlihan L.M., Christoforou A., Arbuckle M.I. et al. A case-control association study and family-based expression analysis of the bipolar disorder candidate gene PI4K2B // J. Psychiatr. Res. 2009. V. 43. № 16. P. 1272–1277. https://doi.org/10.1016/j.jpsychires.2009.05.004
  26. Flax J.F., Hare A., Azaro M.A. et al. Combined linkage and linkage disequilibrium analysis of a motor speech phenotype within families ascertained for autism risk loci // J. Neurodev. Disord. 2010. V. 2. № 4. P. 210–223. https://doi.org/10.1007/s11689-010-9063-2
  27. Maldžienė Ž., Preikšaitienė E., Ignotienė S. et al. A de novo pericentric inversion in chromosome 4 associated with disruption of PITX2 and a microdeletion in 4p15.2 in a patient with axenfeld-rieger syndrome and developmental delay // Cytogenet. Genome Res. 2017. V. 151. № 1. P. 5–9. https://doi.org/10.1159/000456695
  28. Liang L., Xie Y., Shen Y. et al. A rare de novo interstitial duplication at 4p15.2 in a boy with severe congenital heart defects, limb anomalies, hypogonadism, and global developmental delay // Cytogenet. Genome Res. 2016. V. 150. № 2. P. 112–117. https://doi.org/10.1159/000454698
  29. Turan S., Bastepe M. GNAS spectrum of disorders // Curr. Osteoporos Rep. 2015. V. 13. № 3. P. 146–158. https://doi.org/10.1007/s11914-015-0268-x
  30. Puzhko S., Goodyer C.G., Kerachian M.A. et al. Parathyroid hormone signaling via Gαs is selectively inhibited by an NH(2)-terminally truncated Gαs: Implications for pseudohypoparathyroidism // J. Bone Miner.Res. 2011. V. 26. № 10. P. 2473–2485. https://doi.org/10.1002/jbmr.461
  31. Jarskog L.F., Gilmore J.H., Selinger E.S., Lieberman J.A. Cortical bcl-2 protein expression and apoptotic regulation in schizophrenia // Biol. Psychiatry. 2000. V. 48. № 7. P. 641–650. https://doi.org/10.1016/s0006-3223(00)00988-4
  32. Jarskog L.F., Glantz L.A., Gilmore J.H., Lieberman J.A. Apoptotic mechanisms in the pathophysiology of schizophrenia // Prog. Neuropsychopharmacol. Biol. Psychiatry. 2005. V. 29. № 5. P. 846–858. https://doi.org/10.1016/j.pnpbp.2005.03.010
  33. Minoretti P., Politi P., Coen E. et al. The T393C polymorphism of the GNAS1 gene is associated with deficit schizophrenia in an Italian population sample // Neurosci. Lett. 2006. V. 397. № 1–2. P. 159–163. https://doi.org/10.1016/j.neulet.2005.12.028
  34. Song X., Li X., Gao J. et al. APOA-I: A possible novel biomarker for metabolic side effects in first episode schizophrenia // PLoS One. 2014. V. 9. № 4. https://doi.org/10.1371/journal.pone.0093902
  35. Zheng J., Thylin M.R., Ghorpade A. et al. Intracellular CXCR4 signaling, neuronal apoptosis and neuropathogenic mechanisms of HIV-1-associated dementia // J. Neuroimmunol. 1999. V. 98. № 2. P. 185–200. https://doi.org/10.1016/s0165-5728(99)00049-1
  36. Jin L.Q., Wang H.Y., Friedman E. Stimulated D1 dopamine receptors couple to multiple G alpha proteins in different brain regions // J. Neurochem. 2001. V. 78. № 5. P. 981–990. https://doi.org/10.1046/j.1471-4159.2001.00470.x
  37. Gould T.J., Bizily S.P., Tokarczyk J. et al. Sensorimotor gating deficits in transgenic mice expressing a constitutively active form of Gs alpha // Neuropsychopharmacology. 2004. V. 29. № 3. P. 494–501.https://doi.org/10.1038/sj.npp.1300309
  38. Avissar S., Schreiber G. The involvement of G proteins and regulators of receptor G protein coupling in the pathophysiology, diagnosis and treatment of mood disorders // Clin. Chim. Acta. 2006. V. 366. № 1. P. 37–47. https://doi.org/10.1016/j.cca.2005.11.003
  39. Strawn J.R., Ekhator N.N., D’Souza B.B., Geracioti T.D., Jr. Pituitary-thyroid state correlates with central dopaminergic and serotonergic activity in healthy humans // Neuropsychobiology. 2004. V. 49. № 2. P. 84–87. https://doi.org/10.1159/000076415
  40. Hattori E., Liu C., Zhu H., Gershon E.S. Genetic tests of biologic systems in affective disorders // Mol. Psychiatry. Genetic tests of biologic systems in affective disorders // Mol. Psychiatry. 2005. V. 10. № 8. P. 719–740. https://doi.org/10.1038/sj.mp.4001695
  41. Plagge A., Gordon E., Dean W. et al. The imprinted signaling protein XLαs is required for postnatal adaptation to feeding // Nat. Genet. 2004. V. 36. № 8. P. 818–826. https://doi.org/10.1038/ng1397
  42. Grimaldi B., Bonnin A., Fillion M.P. et al. 5-Hydroxytryptamine-moduline: A novel endogenous peptide involved in the control of anxiety // Neuroscience. 1999. V. 93. № 4. P. 1223–1225. https://doi.org/10.1016/s0306-4522(99)00322-x
  43. Gomot M., Bernard F.A., Davis M.H. et al. Change detection in children with autism: An auditory event-related fMRI study // Neuroimage. 2006. V. 29. № 2. P. 475–484. https://doi.org/10.1016/j.neuroimage.2005.07.027
  44. Bittel D.C., Kibiryeva N., Butler M.G. Whole genome microarray analysis of gene expression in subjects with fragile X syndrome // Genet. Med. 2007. V. 9. № 7. P. 464–472. https://doi.org/10.1097/gim.0b013e3180ca9a9a
  45. Bastepe M., Jüppner H. GNAS locus and pseudohypoparathyroidism // Horm. Res. 2005. V. 63. № 2. P. 65–74. https://doi.org/10.1159/000083895
  46. Germain-Lee E.L., Schwindinger W., Crane J.L. et al. A mouse model of Albright hereditary osteodystrophy generated by targeted disruption of exon 1 of the Gnas gene // Endocrinology. 2005. V. 146. № 11. P. 4697–4709. https://doi.org/10.1210/en.2005-0681
  47. Heinrich T.W., Grahm G. Hypothyroidism presenting as psychosis: Myxedema madness revisited // Prim. Care Companion J. Clin. Psychiatry. 2003. V. 5. № 6. P. 260–266. https://doi.org/10.4088/pcc.v05n0603
  48. Crespi B. Genomic imprinting in the development and evolution of psychotic spectrum conditions // Biol. Rev. Camb. Philos. Soc. 2008. V. 83. № 4. P. 441–493. https://doi.org/10.1111/j.1469-185X.2008.00050.x
  49. Wang L., Chang S., Wang Z. et al. Altered GNAS imprinting due to folic acid deficiency contributes to poor embryo development and may lead to neural tube defects // Oncotarget. 2017. V. 8. № 67. P. 10797–110810. https://doi.org/10.18632/oncotarget.22731
  50. Liu P., Liang J., Jiang F. et al. Gnas promoter hypermethylation in the basolateral amygdala regulates reconsolidation of morphine reward memory in rats // Genes (Basel). 2022. V. 13. № 3. https://doi.org/10.3390/genes13030553
  51. Oh J.H., Jo S., Park K.W. et al. Whole-genome sequencing reveals an association between small genomic deletions and an increased risk of developing Parkinson’s disease // Exp. Mol. Med. 2023. V. 55. № 3. P. 555–564. https://doi.org/10.1038/s12276-023-00952-y
  52. Frey U.H., Alakus H., Wohlschlaeger J. et al. GNAS1 T393C polymorphism and survival in patients with sporadic colorectal cancer // Clin. Cancer Res. 2005. V. 11. № 14. P. 5071–5077.https://doi.org/10.1158/1078-0432.CCR-05-0472
  53. Athanasiu L., Mattingsdal M., Kähler A.K. et al. Gene variants associated with schizophrenia in a Norwegian genome-wide study are replicated in a large European cohort // J. Psychiatr. Res. 2010. V. 44. № 12. P. 748–753. https://doi.org/10.1016/j.jpsychires.2010.02.002
  54. Fanous A.H., Zhou B., Aggen S.H. et al. Genome-wide association study of clinical dimensions of schizophrenia: Polygenic effect on disorganized symptoms // Am. J. Psychiatry. 2012. V. 169. № 12. P. 1309–1317. https://doi.org/10.1176/appi.ajp.2012.12020218
  55. Zlojutro M., Manz N., Rangaswamy M. et al. Genome-wide association study of theta band event-related oscillations identifies serotonin receptor gene HTR7 influencing risk of alcohol dependence // Am. J. Med. Genet. B. Neuropsychiatr. Genet. 2011. V. 156. № 1. P. 44–58. https://doi.org/10.1002/ajmg.b.31136
  56. Carmel M., Michaelovsky E., Weinberger R. et al. Differential methylation of imprinting genes and MHC locus in 22q11.2 deletion syndrome-related schizophrenia spectrum disorders // World J. Biol. Psychiatry. 2021. P. 22. № 1. P. 46–57. https://doi.org/10.1080/15622975.2020.1747113
  57. Park N., Juo S.H., Cheng R. et al. Linkage analysis of psychosis in bipolar pedigrees suggests novel putative loci for bipolar disorder and shared susceptibility with schizophrenia // Mol. Psychiatry. 2004. V. 9. № 12. P. 1091–1099. https://doi.org/10.1038/sj.mp.4001541
  58. McQueen M.B., Devlin B., Faraone S.V. et al. Combined analysis from eleven linkage studies of bipolar disorder provides strong evidence of susceptibility loci on chromosomes 6q and 8q // Am. J. Hum. Genet. 2005. V. 77. № 4. P. 582–595. https://doi.org/10.1086/491603

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (745KB)

Copyright (c) 2023 А.Э. Гареева

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies