Effect of Chronic Radiation Exposure on Human microRNA Expression

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Relative expression of mature microRNA assessed in peripheral blood cells in persons chronically exposed to low-dose radiation in the long-term period. The study included people exposed in the 1950s on the Techa River (Southern Urals, Russia). The cumulative red bone marrow doses (RBM) of the persons in the main study group (33 persons) ranged from 77.7 to 2869.8 mGy (mean value – 698.5 mGy). The comparison group consisted of 30 people with RBM dose not exceeding 70 mGy over their lifetime. Reverse transcription of RNA samples was performed using specific stem-loop primers (“stem-loop”). Changes in the relative content of microRNA were assessed by real-time PCR on the CFX96 detection system (BioRad, USA). Statistical analysis of the results was performed using Mann–Whitney U-criterion. A significant increase in hsa-miR-125b, hsa-miR-181a, and hsa-miR-16-5p content was detected in exposed people after 60 years, and their expression was found to depend on the RBM dose.

About the authors

M. A. Yanishevskaya

Urals Research Center for Radiation Medicine

Author for correspondence.
Email: yanishevskaya@urcrm.ru
Russia, 454141, Chelyabinsk

E. A. Blinova

Urals Research Center for Radiation Medicine; Chelyabinsk State University

Email: yanishevskaya@urcrm.ru
Russia, 454141, Chelyabinsk; Russia, 454001, Chelyabinsk

A. V. Akleyev

Urals Research Center for Radiation Medicine; Chelyabinsk State University

Email: yanishevskaya@urcrm.ru
Russia, 454141, Chelyabinsk; Russia, 454001, Chelyabinsk

References

  1. Friedman R.C., Farh K.K., Burge C.B. et al. Most mammalian mRNAs are conserved targets of microRNAs // Genome Res. 2009. V. 19. № 1. P. 92–105. https://doi.org/10.1101/gr.082701.108
  2. Mao A., Liu Y., Zhang H. et al. microRNA expression and biogenesis in cellular response to ionizing radiation // DNA and Cell Biology. 2014. V. 33. № 10. P. 667–679. https://doi.org/10.1089/dna.2014.2401
  3. Pashaei E., Pashaei E., Ahmady M. et al. Meta-analysis of miRNA expression profiles for prostate cancer recurrence following radical prostatectomy // PLoS One. 2017. V. 12. № 6. https://doi.org/10.1371/journal.pone.0179543
  4. Adhami M., Haghdoost A.A., Sadeghi B. et al. Candidate miRNAs in human breast cancer biomarkers: A systematic review // Breast Cancer. 2018. V. 25. № 2. P. 198–205. https://doi.org/10.1007/s12282-017-0814-803
  5. Pardini B., De Maria D., Francavilla A. et al. MicroRNAs as markers of progression in cervical cancer: A systematic review // BMC Cancer. 2018. V. 18. № 1. P. 696. https://doi.org/10.1186/s12885-018-4590-4
  6. Shao C., Yang F., Qin Z. et al. The value of miR-155 as a biomarker for the diagnosis and prognosis of lung cancer: A systematic review with meta-analysis // BMC Cancer. 2019. V. 19. № 1. P. 1103. https://doi.org/10.1186/s12885-019-6297-6
  7. Ромакина В.В., Жиров И.В., Насонова С.Н. и др. МикроРНК как биомаркеры сердечно-сосудистых заболеваний // Кардиология. 2018. Т. 58. № 1. С. 66–71. https://doi.org/10.18087/cardio.2018.1.10083
  8. Otsuka M., Kishikawa T., Yoshikawa T. et al. MicroRNAs and liver disease // J. Hum. Genet. 2016. V. 62. P. 75–80. https://doi.org/10.1038/jhg.2016.53
  9. Zhang Y., Jia Y., Zheng R. et al. Plasma microRNA-122 as a biomarker for viral-, alcohol-, and chemicalrelated hepatic diseases // Clin. Chem. 2010. V. 56. № 12. P. 1830–1838. https://doi.org/10.1373/clinchem.2010.147850
  10. Metheetrairut C., Slack F.J. MicroRNAs in the ionizing radiation response and in radiotherapy // Curr. Op. in Genet. & Development. 2013. V. 23. № 1. P. 2–19. https://doi.org/10.1016/j.gde.2013.01.002
  11. Jacob N.K., Cooley J.V., Yee T.N. et al. Identification of sensitive serum microRNA biomarkers for radiation biodosimetry // PLoS One. 2013. V. 8. № 2. https://doi.org/10.1371/journal.pone.0057603
  12. Chaudhry M.A., Omaruddin R.A., Kreger B. et al. MicroRNA responses to chronic or acute exposures to low dose ionizing radiation // Mol. Biol. Reports. 2012. V. 39. № 7. P. 7549–7558. https://doi.org/10.1007/s11033-012-1589-9
  13. Simone N.L., Soule B.P., Ly D. et al. Ionizing radiation-induced oxidative stress alters miRNA expression // PLoS One. 2009. V. 4. https://doi.org/10.1371/journal.pone.0006377
  14. Shin S., Cha H.J., Lee E.M. et al. Alteration of miRNA profiles by ionizing radiation in A549 human non-small cell lung cancer cells // Int. J. Oncol. 2009. V. 35. № 1. P. 81–86.
  15. Chaudhry M.A. Real-time PCR analysis of microRNA expression in ionizing radiation-treated cells // Cancer Biother. Radiopharm. 2009. V. 24. № 1. P. 49–56. https://doi.org/10.1089/cbr.2008.0513
  16. Song M., Xie D., Gao S. et al. A biomarker panel of radiation-upregulated miRNA as signature for ionizing radiation exposure // Life (Basel). 2020. V. 10. № 12. P. 361. https://doi.org/10.3390/life10120361
  17. Templin T., Paul S., Amundson S.A. et al. Radiation-induced microRNA expression changes in peripheral blood cells of radiotherapy patients // Int. J. of Rad. Oncol., Biol., Physics. 2011. V. 80. № 2. P. 54957. https://doi.org/10.1016/j.ijrobp.2010.12.061
  18. Weidhaas I., Babar S.M., Nallur P. et al. MicroRNAs as potential agents to alter resistance to cytotoxic anticancer therapy // Cancer Res. 2007. V. 67. № 23. P. 11111–11116.
  19. Maes O.C., An J., Sarojini H. et al. Changes in MicroRNA expression patterns in human fibroblasts after low-LET radiation // J. Cell Biochem. 2008. V. 105. № 3. P. 824–834. https://doi.org/10.1002/jcb.21878
  20. Templin T., Paul S., Amundson S.A. et al. Radiation-induced micro-RNA expression changes in peripheral blood cells of radiotherapy patients // Int. J. Rad. Oncol. Biol. Phys. 2011. V. 80. № 2. P. 549–557. https://doi.org/10.1016/j.ijrobp.2010.12.061
  21. Lacombe J., Sima C., Amundson S.A., Zenhausern F. Candidate gene biodosimetry markers of exposure to external ionizing radiation in human blood: A systematic review // PLoS One. 2018. V. 13. № 6. https://doi.org/10.1371/journal.pone.0198851
  22. Jacob N.K., Cooley J.V., Yee T.N. et al. Identification of sensitive serum microRNA biomarkers for radiation biodosimetry // PLoS One. 2013. V. 8. № 2. https://doi.org/10.1371/journal.pone.0057603
  23. Chen G., Zhu W., Shi D. et al. MicroRNA-181a sensitizes human malignant glioma U87MG cells to radiation by targeting Bcl-2 // Oncol. Reports. 2010. V. 23. № 4. P. 997–1003. https://doi.org/10.3892/or_00000725
  24. Beer L., Seemann R., Ristl R. et al. High dose ionizing radiation regulates micro RNA and gene expression changes in human peripheral blood mononuclear cells // BMC Genomics. 2014. V. 15. P. 814. https://doi.org/10.1186/1471-2164-15-814
  25. SunY., Hawkins P.G., Bi N. et al. Serum microRNA signature predicts response to high-dose radiation therapy in locally advanced non-small cell lung cancer // Int. J. of Rad. Oncol., Biol., Physics. 2018. V. 100. № 1. P. 107–114. https://doi.org/10.1016/j.ijrobp.2017.08.039
  26. Силкин C.C., Крестинина Л.Ю., Старцев В.Н. и др. Уральская когорта аварийно-облученного населения // Медицина экстрем. ситуаций. 2019. Т. 21. № 3. С. 393–402.
  27. Degteva M.O., Napier B.A., Tolstykh E.I. et al. Enhancements in the Techa River dosimetry system: TRDS-2016D code for reconstruction of deterministic estimates of dose from environmental exposures // Health Physics. 2019. V. 117. № 4. P. 378–387. https://doi.org/10.1097/HP.0000000000001067
  28. Livak K.J., Schmittgen T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) // Methods. 2001. V. 25. № 4. P. 402–408. https://doi.org/10.1006/meth.2001.1262
  29. Riolo G., Cantara S., Marzocchi C., Ricci C. miRNA targets: From prediction tools to experimental validation // Meth. and Protocols. 2020. V. 4. № 1. https://doi.org/10.3390/mps4010001
  30. Stroynowska-Czerwinska A., Fiszer A., Krzyzosiak W.J. The panorama of miRNA-mediated mechanisms in mammalian cells // Cell. and Mol. Life Sci. 2014. V. 71. № 12. P. 2253–2270. https://doi.org/10.1007/s00018-013-1551-6
  31. Aqeilan R.I., Calin G.A., Croce C.M. miR-15a and miR-16-1 in cancer: discovery, function and future perspectives // Cell Death Differ. 2010. V. 17. № 2. P. 215–220. https://doi.org/10.1038/cdd.2009.69
  32. Chen G., Zhu W., Shi D. et al. MicroRNA-181a sensitizes human malignant glioma U87MG cells to radiation by targeting Bcl-2 // Oncol. Reports. 2010. V. 23. № 4. P. 997–1003. https://doi.org/10.3892/or_00000725
  33. Махоткин М.А., Чеботарев Д.А., Тютякина М.Г. и др. Роль микроРНК в развитии радиорезистентности клеток рака предстательной железы (экспериментальное исследование) // Онкоурология. 2021. Т. 17. № 4. С. 85–93. https://doi.org/10.17650/1726-9776-2021-17-4-85-93
  34. Шуленина Л.В., Михайлов В.Ф., Васильева И.М. и др. Профили экспрессии генов и некодирующих РНК в биоптатах тканей и клетках крови пациентов с разной патологией после радиационного воздействия // Вестник ВГУ. Серия: Химия. Биология. Фармация. 2019. № 1. С. 103–109.
  35. Yang D., Zhan M., Chen T. et al. miR-125b-5p enhances chemotherapy sensitivity to cisplatin by down-regulating Bcl2 in gallbladder cancer // Sci. Rep. 2017. V. 7. https://doi.org/10.1038/srep43109
  36. Никифоров В.С., Блинова Е.А., Аклеев А.В. Транскрипционная активность генов клеточного цикла и апоптоза у хронически облученных лиц, имеющих повышенную частоту TCR-мутантных лимфоцитов // Радиация и риск (Бюлл. Нац. рад.-эпидем. регистра). 2020. Т. 29. № 2. С. 89–100.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (221KB)
3.

Download (113KB)

Copyright (c) 2023 М.А. Янишевская, Е.А. Блинова, А.В. Аклеев

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies