Study of the Association of Polymorphic Variants rs2295080 and rs1883965 of the MTOR Gene with the Development of Pulmonary Sarcoidosis

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The aim of the study was to study the association of polymorphic variants rs2295080 and rs1883965 of the MTOR gene with the risk of developing pulmonary sarcoidosis. The study included 253 people (122 patients diagnosed with morphologically verified sarcoidosis with lung involvement (average age – 41.00 ± 12.56 years) and 131 healthy people (control group) (average age – 44.00 ± 14.23). The distribution of alleles and genotypes of polymorphic markers rs2295080 and rs1883965 of the MTOR gene was analyzed in the study groups. There was a statistically significant increase in the level of mRNA expression of the MTOR gene in PBL of patients with pulmonary sarcoidosis compared with the control group (p = 0.007). A decrease in the number of transcripts of this gene was noted in patients receiving therapy compared with patients without therapy (p = = 0.025). There were no statistically significant differences in the distribution of allele and genotype frequencies for polymorphic markers rs2295080 and rs1883965 of the MTOR gene in the group of patients with pulmonary sarcoidosis and in the control group: (χ2 = 0.196, d.f. = 1, p = 0.658 and χ2 = 0.637, d.f. = 2, p = = 0.728) and (χ2 = 0.034, d.f. = 1, p = 0.855 and χ2 = 0.051, d.f. = 2, p = 0.975) respectively. Conclusion: аn increased level of expression of the MTOR gene in peripheral blood leukocytes of patients with pulmonary sarcoidosis may indicate the involvement of this gene in the pathogenesis of this disease. Polymorphic markers rs2295080 and rs1883965 of the MTOR gene are not associated with the risk of developing pulmonary sarcoidosis. Probably, an increase in the expression level of the MTOR gene in patients with pulmonary sarcoidosis is due to the development of inflammation.

About the authors

I. E. Malysheva

Institute of Biology of Karelian Research Centre Russian Academy of Sciences

Author for correspondence.
Email: i.e.malysheva@yandex.ru
Russia, 185910, Petrozavodsk

L. V. Topchieva

Institute of Biology of Karelian Research Centre Russian Academy of Sciences

Email: i.e.malysheva@yandex.ru
Russia, 185910, Petrozavodsk

E. L. Tikhonovich

Baranov Republican Hospital

Email: i.e.malysheva@yandex.ru
Russia, 185019, Petrozavodsk

References

  1. Sarbassov D.D., Ali S.M., Kim D.H. et al. Rictor, a novel binding partner of mTOR, defnes a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton // Curr. Biol. 2004. V. 14. P. 1296–1302. https://doi.org/10.1016/j.cub.2004.06.054
  2. Huang S. mTOR signaling in metabolism and cancer // Cells. 2020. V. 9. № 10. https://doi.org/10.3390/cells9102278
  3. Linke M., Pham H.T., Katholnig K. et al. Chronic signaling via the metabolic checkpoint kinase mTORC1 induces macrophage granuloma formation and marks sarcoidosis progression // Nat. Immunol. 2017. V. 18. № 3. P. 293–302. https://doi.org/10.1038/ni.3655
  4. Шмелёв Е.И. Саркоидоз // Атмосфера, пульмонология и аллергология. 2004. № 2. С. 3–10.
  5. Малышева И.Е., Тихонович Э.Л., Олейник Е.К. и др. Поляризация макрофагов при саркоидозе // Мед. иммунология. 2021. Т. 23. № 1. P. 7–16. https://doi.org/10.15789/1563-0625-MPI-2083
  6. Пархитько А.А., Фаворова О.О., Хабибуллин Д.И. и др. Киназ аmTOR: регуляция, роль в поддержании клеточного гомеостаза, развитии опухолей и старении // Биохимия. 2014. Т. 79. № 2. С. 128–143.
  7. Jhanwar-Uniyal M., Amin A.G., Cooper J.B. Discrete signaling mechanisms of mTORC1 and mTORC2: Connected yet apart in cellular and molecular aspects // Adv. Biol. Regul. 2017. V. 64. P. 39–48. https://doi.org/10.1016/j.jbior.2016.12.001
  8. Locke L., Schlesinger L., Crouser E. Current sarcoidosis models and the importance of focusing on the granuloma // Front. Immunol. 2020. V. 11. https://doi.org/10.3389/fimmu.2020.01719
  9. Pouché L., Stojanova J., Pierre Marquet P., Picard N. New challenges and promises in solid organ transplantation pharmacogenetics: The genetic variability of proteins involved in the pharmacodynamics of immunosuppressive drugs // Pharmacogenomics. 2016. V. 17. № 3. P. 277–296. https://doi.org/10.2217/pgs.15.169
  10. Xu M., Gao Y., Yu T. Functional promoter rs2295080 T>G variant in MTOR gene is associated with risk of colorectal cancer in a Chinese population // Biomedicine & Pharmacotherapy. 2015. V. 70. P. 28–32. https://doi.org/10.1016/j.biopha.2014.12.045
  11. Lan J., Zhu Y., Rao J. et al. MTOR gene polymorphism may be associated with microscopic polyangiitis susceptibility in a Guangxi population of China // Gene. 2023. V. 854. https://doi.org/10.1016/j.gene.2022.147101
  12. Min Z., Mi Y., Lv Z. et al. Associations of Genetic Polymorphisms of mTOR rs2295080 T/G and rs1883965 G/A with Susceptibility of Urinary System Cancers // Dis. Markers. 2022. V. 17. https://doi.org/10.1155/2022/1720851
  13. Paterno J., Koskela A., Hyttinen J. Autophagy genes for wet age-related macular degeneration in a finnish case-control study // Genes. 2020. V. 11. P. 1318. https://doi.org/10.3390/genes11111318
  14. Li H., Liu Y., Huang J. et al. Association of genetic variants in lncRNA GAS5/miR-21/mTOR axis with risk and prognosis of coronary artery disease among a Chinese population // J. Clin. Lab. Anal. 2020. V. 34. № 10. https://doi.org/10.1002/jcla.23430
  15. Baughman R.P., Culver D.A., Judson M.A. A concise review of pulmonary sarcoidosis // Am. J. Respir. Crit. Care Med. 2011. V. 183. № 5. P. 573–581. https://doi.org/10.1164/rccm.201006-0865CI
  16. Bizhani F., Hashemi M., Danesh H. et al. Association between single nucleotide polymorphisms in the PI3K/AKT/mTOR pathway and bladder cancer risk in a sample of Iranian population // EXCLI J. 2018. V. 17. P. 3–13. https://doi.org/10.17179/excli2017-329
  17. Клинические рекомендации по саркоидозу Минздрава России. М., 2022. С. 30–31.
  18. Pinto J., Dias V., Zoller H. et al. Hepcidin messenger RNA xpression in human lymphocytes // Immunology. 2010. V. 130. № 2. P. 217–230. https://doi.org/10.1111/j.1365-2567.2009.03226.x
  19. Корнилов Д.О., Тряпицын М.А., Гребнев Д.Ю. MTOR: сигнализация, регуляция, влияние на метаболизм, роль в регуляции продолжительности жизни и опухолевого роста // Изв. Коми научного центра УрО РАН. 2021. № 5. С. 104–115. https://doi.org/10.19110/1994-5655-2021-5-104-115
  20. Rubie C., Zimmer J., Lammert F. MicroRNA-496 and mechanistic target of rapamycin expression are associated with type 2 diabetes mellitus and obesity in elderly people // Ann. Nutr. Metab. 2019. V. 74. № 4. P. 279–286. https://doi.org/10.1159/000499576
  21. Rahtes A., Geng S., Lee C., Li L. Cellular and molecular mechanisms involved in the resolution of innate leukocyte inflammation // J. Leukoc. Biol. 2018. V. 104. № 3. P. 535–541. https://doi.org/10.1002/JLB.3MA0218-070R
  22. Li Y., Zhao P., Yue X. et al. Association of mTOR polymorphisms with cancer risk and clinical outcomes: a meta-analysis // PLoS One. 2014. V. 9. № 5. https://doi.org/10.1371/journal.pone.0097085
  23. Cao Q., Ju X., Li P. A functional variant in the MTOR promoter modulates its expression and is associated with renal cell cancer risk // PLoS One. 2012. V. 7. № 11. https://doi.org/10.1371/journal.pone.0050302
  24. Saravani M., Shahraki-Ghadimi H., Maruei-Milan R. et al. Effects of the mTOR and AKT genes polymorphisms on systemic lupus erythematosus risk // Mol. Biol. Rep. 2020. V. 47. № 5. P. 3551–3556. https://doi.org/10.1007/s11033-020-05446-y
  25. Shao J., Li Y., Zhao P. et al. Association of mTOR polymorphisms with cancer risk and clinical outcomes: A meta-analysis // PLoS One. 2014. V. 9. № 5. https://doi.org/10.1371/journal.pone.0097085
  26. Zining J., Lu X., Caiyun H., Yuan Y. Genetic polymorphisms of mTOR and cancer risk: A systematic review and updated meta-analysis // Oncotarget. 2016. V. 7. № 35. P. 57464–57480. https://doi.org/10.18632/oncotarget.10805
  27. Wang M., Ma S.J., Wu X.Y. et al. Impact of mTOR gene polymorphisms and gene-tea interaction on susceptibility to tuberculosis // J. Clin. Cases. 2020. V. 8. № 19. P. 4320–4330. https://doi.org/10.12998/wjcc.v8.i19.4320
  28. Николаев А.В., Утехин В.И., Чурилов Л.П. Сравнительная этио-эпидемиологическая характеристика туберкулеза и саркоидоза легких: классические и новые представления // Педиатрия. 2020. Т. 11. № 5. С. 37–50. https://doi.org/10.17816/PED11537-50
  29. He J., Wang M., Qiu L. et al. Genetic variations of mTORC1 genes and risk of gastric cancer in an Eastern Chinese population // Mol. Carcinog. 2013. V. 52. Suppl. 1. P. E70-9. https://doi.org/10.1002/mc.22013

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (40KB)

Copyright (c) 2023 И.Е. Малышева, Л.В. Топчиева, Э.Л. Тихонович

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies