Phylogeny of the Genus Eleginus (Gadidae) according to the Analysis of the Variability of Microsatellite Locus and mtDNA CO1 Fragment

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Genetic methods based on the study of the variability of mitochondrial (CO1) and nuclear (microsatellites) DNA were used to study the processes of morphogenesis in the genus Eleginus. The revealed level of genetic differentiation characterizes the Pacific Saffron cod (Eleginus gracilis) and Navaga (Eleginus nawaga) as independent species that diverged in a relatively recent period at the boundary of the Pliocene and Pleistocene. The White Sea Navaga’s populations were by microsatellites markers differed from the Navaga inhabiting the basins of the Kara and the Barents seas. At the same time, it is assumed that the Kara-Barents Sea region could act as a “glacial refugium”, which ensured the post-glacial settlement of Navaga, including in the “watered” White Sea depression. Phylogenetic analysis based on CO1 haplotypes diversity reveals demand of possible reorganization in order Gadiformes, including Eleginus in an independent subfamily – sister in relation to the subfamilies Gadinae, Lotinae, Merlucciinae. The prospects of improving genetic methodological approaches in the framework of the development of research on Saffron cod are noted.

About the authors

A. N. Stroganov

Moscow State University

Author for correspondence.
Email: andrei_str@mail.ru
Russia, 119234, Moscow

E. V. Ponomareva

Moscow State University

Email: andrei_str@mail.ru
Russia, 119234, Moscow

M. V. Ponomareva

Moscow State University

Email: andrei_str@mail.ru
Russia, 119234, Moscow

E. A. Shubina

Moscow State University

Email: andrei_str@mail.ru
Russia, 119234, Moscow

K. A. Zhukova

Moscow State University

Email: andrei_str@mail.ru
Russia, 119234, Moscow

A. A. Smirnov

All-Russian Research Institute of Fisheries and Oceanography (VNIRO); North-Eastern State University (NEGU)

Email: andrei_str@mail.ru
Russia, 107140, Moscow; Russia, 685000, Magadan

T. A. Rakitskaya

Vavilov Institute of General Genetics, Russian Academy of Sciences,
Russian Academy of Sciences

Email: andrei_str@mail.ru
Russia, 119991, Moscow

M. V. Rakitina

Magadan Branch of the All-Russian Research Institute of Fisheries and Oceanography (MagadanNIRO)

Email: andrei_str@mail.ru
Russia, 685000, Magadan

References

  1. Световидов А.Н. Трескообразные. Фауна СССР. Рыбы. Т. 9. Вып. 4. М.–Л.: Изд-во АН СССР, 1948. 221 с.
  2. Ульченко В.А., Матковский А.К., Степанов С.И. и др. Рыбные ресурсы и их освоение в эстуариях морей Карского и Лаптевых // Труды ВНИРО. 2016. Т. 160. С. 116–132.
  3. Helser T.E., Colman J.R., Anderl D.M., Kastelle C.R. Growth dynamics of saffron cod (Eleginus gracilis) and Arctic cod (Boreogadus saida) in the Northern Bering and Chukchi Seas // Deep Sea Research. Part II. Topical Studies in Oceanography. 2017. V. 135. P. 66–77.
  4. Андрияшев А.П., Чернова Н.В. Аннотированный список рыбообразных и рыб морей Арктики и сопредельных вод // Вопр. ихтиол. 1994. Т. 34. № 4. С. 435–456.
  5. Стасенков В.А. Биология и промысел наваги Eleginus nawaga (Pallas) Белого моря. Автореф. дис. … канд. биол. наук. М.: ВНИРО, 1991. 24 с.
  6. Стасенков В.А. Многолетняя динамика биологических показателей наваги Eleginus nawaga (Walbaum, 1792) Белого моря в связи с изменениями температурного режима водоема // Вестник МГТУ. 2017. Т. 20. № 2. С. 370–380. https://doi.org/10.21443/1560-9278-2017-20-2-370-380
  7. Сафронов Е.Н., Варюхин А.В. Температурный режим воды в прудовом рыбоводстве // Зооиндустрия. 2003. № 11. С. 12–15.
  8. Стасенков В.А., Гончаров Ю.В. Размерно-возрастная структура наваги Eleginus nawaga Белого, Баренцева и Карского морей // Вопр. ихтиол. 2020. Т. 60. № 3. С. 297–308. https://doi.org/10.31857/S0042875220030224
  9. Николотова Л.А. О питании дальневосточной наваги (Eleginus navaga gracilis) // Известия ТИНРО. 1954. 286–288.
  10. Кукушкина Н.А., Щербина А.И. Сравнительная эколого-морфологическая характеристика ледовитоморской наваги Eleginus navaga (Pal.) Белого и Чешской губы Баренцова моря // Вопр. ихтиол. 1977. Т. 17. Вып. 6 (107). С. 1123–1127.
  11. Новикова О.В. Промысел, распределение и некоторые особенности биологии наваги (Eleginus gracilis (Tilesius)) прикамчатских вод // Исслед. водн. биол. ресурсов Камчатки и сев.-зап. части Тихого океана // Сб. науч. тр. КамчатНИРО. 2002. Вып. 6. С. 120–130.
  12. Ракитина М.В., Смирнов А.А. Тихоокеанская навага (Eleginus gracilis Tilesius) Тауйской губы Охотского моря: экология, современное состояние запаса и перспективы промысла // Рыбное хозяйство. 2018. № 3. С. 49–52.
  13. Махотин В.В. Ранний онтогенез тресковых рыб Белого моря. Специфика морфогенетических процессов в раннем онтогенезе костистых рыб (на примере развития тресковых). М.: Тов-во науч. изд. КМК, 2021. 197 с.
  14. Maznikova O.A., Orlov A.M. Navaga Eleginus nawaga of the White Sea: A brief review with emphasis on the Soviet-Russian literature // Polar Biol. 2020. V. 43. P. 1159–1173. https://doi.org/10.1007/s00300-020-02681-8
  15. Sme N., Lyon S., Canino M. et al. Distinction of saffron cod (Eleginus gracilis) from several other gadid species by using microsatellite markers // Fishery Bulletin. 2017. V. 116. № 1. P. 60–68. https://doi.org/10.21203/rs.3.rs-1723734/v1
  16. Zardoya R., Vollmer D.M., Craddock C. et al. Evolutionary conservation of microsatellite flanking regions and their use in resolving the phylogeny of cichlid fishes (Pisces: Perciformes) // Proc. of the Royal Soc. B. Biol. Sciences. 1996. V. 263. № 1376. P. 1589–1598.
  17. Abdul-Muneer P.M. Application of microsatellite markers in conservation genetics and fisheries management: Recent advances in population structure analysis and conservation strategies // Genet. Res. International. 2014. https://doi.org/10.1155/2014/691759
  18. Строганов А.Н. Формирование генетического разнообразия в популяциях тихоокеанской трески (Gadus macrocephalus Tilesius) (Gadidae) // Генетика. 2013. Т. 49. № 11. С. 1300–1305. https://doi.org/10.7868/S0016675813090105
  19. Строганов А.Н., Семенова А.В., Черенкова Н.Н. К таксономии рода Gadus (Gadidae): формирование современной структуры // Генетика. 2017. Т. 53. № 12. С. 1427–1435. https://doi.org/10.1134/S1022795417120122
  20. Строганов А.Н., Орлов А.М., Афанасьев К.И. и др. Предварительные данные по изменчивости трех микросателлитных локусов у тихоокеанской Gadus macrocephalus и атлантической G. morhua трески (Gadidae) // Вопр. ихтиол. 2009. Т. 49. № 2. С. 191–199. https://doi.org/10.1134/S0032945209020039
  21. Skarstein T.H., Westgaard J.-I., Fevolden S.-E. Comparing microsatellite variation in North East Atlantic cod (Gadus morhua L.) to genetic structuring as revealed by pantophysin (Pan I) locus // J. Fish. Biol. 2007. V. 70. P. 271–290. https://doi.org/10.1111/j.1095-8649.2007.01456.x
  22. Wennevik V., Jorstad K.E., Dahle G., Fevolden S.E. Mixed stock analysis and the power of different classes of molecular markers in discriminating coastal and oceanic Atlantic cod (Gadus morhua L.) on the Lofoten spawning grounds, Northern Norway // Hydrobiologia. 2008. V. 606. P. 7–25. https://doi.org/10.1007/s10750-008-9349-5
  23. Строганов А.Н., Афанасьев К.И., Иорстад К.Е. и др. Данные по изменчивости микросателлитных локусов у гренландской трески Gadus ogac Richardson 1836: сравнение с представителями рода Gadus (Gadidae) // Вопр. ихтиол. 2011. Т. 51. № 6. С. 770–777. https://doi.org/10.1134/S0032945211060087
  24. Stroganov A.N. Genus Gadus (Gadidae): Composition, distribution, and evolution of forms // J. of Ichthyology. 2015. V. 55. № 3. P. 319–336. https://doi.org/10.1134/S0032945215030145
  25. Angers B., Bernatchez L. Usefulness of heterologous microsatellites obtained from brook charr, Salvelinus fontinalis Mitchill, in other Salvelinus species // Mol. Ecol. 1996. V. 5. № 2. P. 317–319. https://doi.org/10.1111/j.1471-8286.2005.00922.x
  26. Patton J.C., Gallaway B.J., Fechhelm R.G., Cronin M.A. Genetic variation of microsatellite and mitochondrial DNA markers in broad whitefish (Coregonus nasus) in the Colville and Sagavanirktok rivers in northern Alaska // Canadian J. of Fisheries and Aquatic Sci. 1997. V. 54. № 7. P. 1548–1556.
  27. Perry G.M.L., King T.L., T.-Cyr J.S. et al. Isolation and cross-familial amplification of 41 microsatellites for the brook charr (Salvelinus fontinalis): PRIMER NOTE // Mol. Ecol. Notes. 2005. V. 5. № 2. P. 346–351. https://doi.org/10.1111/j.1471-8286.2005.00922.x
  28. Bezault E., Rognon X., Gharbi K. Microsatellites cross-species amplification across some african cichlids // Int. J. Evol. Biol. 2012. V. 2012. P. 1–7. https://doi.org/10.1155/2012/870935
  29. Строганов А.Н., Афанасьев К.И., Рубцова Г.А. и др. Данные по изменчивости микросателлитных локусов у кильдинской трески Gadus morhua kildinensis (Gadidae) // Вопр. ихтиол. 2011. Т. 51. № 4. С. 459–466.
  30. Weir B.S. Genetic Data Analysis II. Methods for Discrete Population Genetic Data. Massachusets: Sinauer Ass. Sunderland, 1996. 445 p.
  31. Lewis P.O., Zaykin D. Genetic Data Analysis: Computer Program for the Analysis of Allelic Data. 2001. Version 1.0 (d16c). http://lewis.eeb.uconn.edu/lewishome/software.html
  32. Nei M. Estimation of average heterozygosity and genetic distance from a small number of individuals // Genetics. 1978. V. 89. P. 583–590.
  33. Ивантер Э.В., Коросов А.В. Введение в количественную биологию. Петрозаводск: Петрозаводск. гос. ун-т, 2003. 304 с.
  34. FSTAT 2.9.3. http://www2.unil.ch/popgen/softwares/fstat.htm
  35. Peakall R., Smouse P.E. GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research an update // Bioinformatics. 2012. V. 28. № 19. P. 2537–2539. https://doi.org/10.1093/bioinformatics/bts460
  36. Ponomareva E.V., Volkov A.A., Ponomareva M.V. et al. European grayling phylogeographic lineages of Russian European North from barcoding DNA fragment // Bulgarian J. of Agricultural Sci. 2022. V. 28. P. 1. https://doi.org/10.3389/conf.fmars.2019.07.00068
  37. Villesen P. FaBox: An online toolbox for fasta sequences // Mol. Ecol. Notes. 2007. V. 7. № 6. P. 965–968.
  38. Librado P., Rozas J. DnaSP v5: A software for comprehensive analysis of DNA polymorphism data // Bioinformatics. 2009. V. 25. P.1451–1452. https://doi.org/10.1093/bioinformatics/btp187
  39. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences // J. of Mol. Evol. 1980. V. 16. P. 111–120.
  40. Ratnasingham S., Hebert P.D.N. BOLD: The barcode of life data system // Mol. Ecol. Notes. 2007. V. 7. P. 355–364. http://www.barcodinglife.org.
  41. Kumar S., Stecher G., Li M. et al. MEGA X: Molecular evolutionary genetics analysis across computing platforms // Mol. Biol. and Evol. 2018. V. 35. P. 1547–1549. https://doi.org/10.1093/molbev/msy096
  42. Lefort V., Longueville J.-E., Gascuel O. SMS: Smart model selection in PhyML // Mol. Biol. and Evol. 2017. V. 34. I. 9. P. 2422–2424. https://doi.org/10.1093/molbev/msx149
  43. Huelsenbeck J.P., Ronquist F. MRBAYES: Bayesian inference of phylogenetic trees // Bioinformatics Applications Note. 2001. V. 17. № 8. P. 754–755.
  44. Bandelt H.J., Forster P., Röhl A. Median-joining networks for inferring intraspecific phylogenies // Mol. Biol. and Evol. 1999. V. 16. № 1. P. 37–48.
  45. Laakkonen H.M., Hardman M., Strelkov P., Väinölä R. Cycles of trans-Arctic dispersal and vicariance, and diversification of the amphi-boreal marine fauna // J. Evol. Biol. 2021. V. 34. P. 73–96. https://doi.org/10.1111/jeb.13674
  46. Avise J.C. Molecular Markers, Natural History and Evolution. N.Y.: Chapman and Hall, 1994. 511 p.
  47. Stepien C.A., Dillon A.K., Patterson A.K. Population genetics, phylogeography, and systematics of the thornyhead rockfishes (Sebastolobus) along the deep continental slopes of the North Pacific Ocean // Canadian J. of Fisheries and Aquatic Sciences. 2000. V. 57. № 8. P. 1701–1717. https://doi.org/10.1139/f00-095
  48. Gharrett A.J., Chernova N.V., Sme N.A. et al. Demography of a nearshore gadid (Eleginus nawaga) from the Barents Sea coast during the last glacial period // Res. Square. 2022. P. 1–19. https://doi.org/10.21203/rs.3.rs-1723734/v1
  49. Животовский Л.А. Популяционная биометрия. М.: Наука, 1991. 276 с.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (196KB)
3.

Download (25KB)
4.

Download (61KB)
5.

Download (84KB)

Copyright (c) 2023 А.Н. Строганов, Е.В. Пономарева, М.В. Пономарева, Е.А. Шубина, К.А. Жукова, А.А. Смирнов, Т.А. Ракицкая, М.В. Ракитина

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies