The Genetic Resource of Thinopyrum elongatum (Host) D.R. Dewey in Breeding Improvement of Wheat

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Thinopyrum elongatum (Host) D.R. Dewey is a valuable resource for the application of genomic engineering and modern genetic technologies aimed at wheat improvement because it carries genome Е, the parent genome of the Thinopyrum genus. Its representatives are successfully used in distant hybridization and production of introgressive lines for transferring genes of economically valuable traits into new wheat varieties. This review presents the available data on the main genetically characterized traits of Th. elongatum that have been or can be used for transfer into the wheat genome. These traits include resistance to fusariosis, septoriosis, rust diseases, and abiotic environmental factors – overwatering, soil salinity and low temperatures, as well as the traits that determine the quality of bakery products. The latest studies of Th. elongatum genome by genome and transcriptome sequencing are also considered.

About the authors

T. V. Korostyleva

Vavilov Institute of General Genetics, Russian Academy of Sciences

Author for correspondence.
Email: tatkor@vigg.ru
Russia, 119991, Moscow

A. N. Shiyan

Vavilov Institute of General Genetics, Russian Academy of Sciences

Email: tatkor@vigg.ru
Russia, 119991, Moscow

T. I. Odintsova

Vavilov Institute of General Genetics, Russian Academy of Sciences

Email: tatkor@vigg.ru
Russia, 119991, Moscow

References

  1. Fu Y.B., Peterson G.W., Horbach C. et al. Elevated mutation and selection in wild emmer wheat in response to 28 years of global warming // Proc. Natl Acad. Sci. USA. 2019. V. 116(40). P. 20002–20008. https://doi.org/10.1073/pnas.1909564116
  2. Hoffmann A.A., Sgrò C.M. Climate change and evolutionary adaptation // Nature. 2011. V. 470(7335). P. 479–485. https://doi.org/10.1038/nature09670
  3. Dempewolf H., Eastwood R.J., Guarino L. et al. Adapting agriculture to climate change: A global initiative to collect, conserve and use crop wild relatives // Agroecol. Sust. Food. 2014. V. 38. P. 369–377. https://doi.org/10.1080/21683565.2013.870629
  4. Ud Dowla M.A.N., Edwards I., O’Hara G. et al. Developing wheat for improved yield and adaptation under a changing climate: optimization of a few key genes // Engineering. 2018. V. 4. Is. 4. P. 514–522. https://doi.org/10.1016/j.eng.2018.06.005
  5. Cui L., Ren Y., Murra T.D. et al. Development of perennial wheat through hybridization between wheat and wheatgrasses: a review // Engineering. 2018. V. 4. Is. 4. P. 507–513. https://doi.org/10.1016/j.eng.2018.07.003
  6. Крупин П.Ю., Дивашук М.Г., Карлов Г.И. Использование генетического потенциала многолетних дикорастущих злаков в селекционном улучшении пшеницы // С.-хоз. биология, 2019. Т. 54. № 3. С. 409–425. https://doi.org/10.15389/agrobiology.2019.3.409rus
  7. Потоцкая И.В., Шаманин В.П., Айдаров А.Н., Моргунов А.И. Использование пырея среднего (Thinopyrum intermedium) в селекции // Вавиловский журн. генет. и селекции. 2022. Т. 26(5) С. 413–421. https://doi.org/10.18699/VJGB-22-51
  8. Baum B.R., Johnson D.A. Lophopyrum Á. Löve (1980), Thinopyrum Á. Löve (1980), Trichopyrum Á. Löve (1986): One, two or three genera? A study based on the nuclear 5S DNA // Genet. Resources and Crop Evol. 2018. V. 65. P. 161–186. https://doi.org/10.1007/s10722-017-0519-z
  9. Huang W., Zhang L., Columbus J.T., Hu Y. et al. A well-supported nuclear phylogeny of Poaceae and implications for the evolution of C4 photosynthesis // Mol. Plant. 2022. V. 15. Is. 4. P. 755–777. https://doi.org/10.1016/j.molp.2022.01.015
  10. Wang R.R.-C. Genome relationships in the perennial Triticeae based on diploid hybrids and beyond // Hereditas. 1992. V. 116. P. 133–136. https://doi.org/10.1111/j.1601-5223.1992.tb00812.x
  11. Wang R.R., Larson S.R., Jensen K.B. et al. Genome evolution of intermediate wheatgrass as revealed by EST-SSR markers developed from its three progenitor diploid species // Genome. 2015. V. 58(2). P. 63–70. https://doi.org/10.1139/gen-2014-0186
  12. Liu Z., Li D., Zhang X. Genetic relationships among five basic genomes St, E, A, B and D in triticeae revealed by genomic southern and in situ hybridization // J. Integr. Plant Biol. 2007. V. 4949. P. 1080–1086. https://doi.org/10.1111/j.1672-9072.2007.00462.x
  13. Gaál E., Valárik M., Molnár I. et al. Identification of COS markers for Thinopyrum elongatum chromosomes preliminary revealed high level of macrosyntenic relationship between the wheat and Th. elongatum genomes // PLoS One. 2018. V. 13. https://doi.org/10.1371/journal.pone.0208840
  14. Baker L., Grewal S., Yang C.Y. et al. Exploiting the genome of Thinopyrum elongatum to expand the gene pool of hexaploid wheat // Theor. Appl. Genet. 2020. V. 133(7). P. 2213–2226. https://doi.org/10.1007/s00122-020-03591-3
  15. https://powo.science.kew.org/taxon/urn:lsid:ipni.org:na-mes:942123-1#synonyms
  16. Guo J., Yu X., Yin H., Liu G. et al. Phylogenetic relationships of Thinopyrum and Triticum species revealed by SCoT and CDDP markers // Plant. Syst. Evol. 2016. V. 302. P. 1301–1309. https://doi.org/10.1007/s00606-016-1332-4
  17. Mao P., Huang Y., Wang X., Meng L. et al. Cytological evaluation and karyotype analysis in plant germplasms of Elytrigia Desv. // Agr. Sci. China. 2010. V. 9. P. 553–560. https://doi.org/10.1016/S1671-2927(09)60251-0
  18. Chen S., Huang Z., Dai Y. et al. The development of 7E chromosome-specific molecular markers for Thinopyrum elongatum based on SLAF-seq technology // PLoS One. 2013. V. 8(6). https://doi.org/10.1371/journal.pone.0065122
  19. https://www.iucnredlisTh.org/species/21343347/2141-3455#taxonomy
  20. Shepherd K.W., Islamic A.K.M.R. Fourth compendium of wheat-alien chromosome lines // Proc. of the 7th Int. Genetic Symp. Bath: Bath Press, 1988. P. 1373–1398.
  21. Li X., Jiang X., Chen X. et al. Molecular cytogenetic identification of a novel wheat-Agropyron elongatum chromosomes translocation line with powdery mildew resistance // PLoS One. 2017. V. 12(9). https://doi.org/10.1371/journal.pone.0184462
  22. http://www.agroatlas.ru/ru/content/related/Elytrigia_el-ongata/
  23. Linc G., Sepsi A., Molnár-Láng M. A FISH karyotype to study chromosome polymorphisms for the Elytrigia elongata E genome // Cytogenet. Genome Res. 2012. V. 136(2). P. 138–144. https://doi.org/10.1159/000334835
  24. Kruppa K., Molnár-Lang M. Simultaneous visualization of different genomes (J, JSt and St) in a Thinopyrum intermedium × Thinopyrum ponticum synthetic hybrid (Poaceae) and in its parental species by multicolour genomic in situ hybridization (mcGISH) // Comp. Cytogenet. 2016. V. 10. P. 283–293. https://doi.org/10.3897/CompCytogen.v10i2.7305
  25. Arterburn M., Kleinhofs A., Murray T., Jones S. Polymorphic nuclear gene sequences indicate a novel genome donor in the polyploid genus Thinopyrum // Hereditas. 2011. V. 148. P. 8–27. https://doi.org/10.1111/j.1601-5223.2010.02084.x
  26. Chen Q., Conner R.L., Laroche A., Thomas J.B. Genome analysis of Thinopyrum intermedium and Thinopyrum ponticum using genomic in situ hybridization // Genome. 1998. V. 41. P. 580–586.
  27. Brasileiro-Vidal A.C., Cuadrado A., Brammer S.P. et al. Chromosome characterization in Thinopyrum ponticum (Triticeae, Poacea) using in situ hybridization with different DNA sequences // Genet. Mol. Biol. 2003. V. 26. P. 505–510. https://doi.org/10.1590/S1415-47572003000400014
  28. Zhang X., Dong Y., Wang R.R.C. Characterisation of genomes and chromosomes in partial amphiploids of the hybrid Triticum aestivum × Thinopyrum ponticum by in situ hybridization, isozyme analysis, and RAPD // Genome. 1996. V. 39. P. 1062–1071. https://doi.org/10.1139/g96-133
  29. Friebe B., Jiang J., Raupp W.J. et al. Characterization of wheat-alien translocations conferring resistance to diseases and pests: current status // Euphytica. 1996. V. 91. P. 59–87. https://doi.org/10.1007/BF00035277
  30. Tsitsin N.V. Remote hybridization as a method of creating new species and varieties of plants // Euphytica. 1965. V. 14 (3). P. 326–330.
  31. Лапченко Г.Д. Применение метода отдаленной гибридизации в селекции озимой пшеницы // Селекция и семеноводство. 1967. Т. 2. С. 33–38.
  32. Sandukhadze B.I., Mamedov R.Z., Krakhmalyova M.S., Bugrova V.V. Scientific breeding of winter bread wheat in the Non-Chernozem zone of Russia: The history, methods and result // Vavilov. Zh. Genet. Selektsii. 2021. V. 25(4). P. 367–373. https://doi.org/10.18699/VJ21.53-o
  33. Мартынов С.П., Добротворская Т.В., Крупнов В.А. Генеалогический анализ использования двух видов пырея (Agropyron) в селекции мягкой пшеницы (Triticum aestivum L.) на устойчивость к болезням // Генетика. 2016. Т. 52. № 2. С. 179–188.
  34. Sharma H.C., Gill B.S. New hybrids between Agropyron and wheath. Production, morphology and cytogenetic analysis of F1 hybrids and backcross derivates // Theor. Appl. Genet. 1983. V. 66. № 2. P. 111–121.
  35. Rommel R., Jenkins B.C. Amphiploids in Triticinae produced at the University of Manitoba from March 1958 to December 1959 // Wheat Inf. Service. 1959. V. 9/10. P. 23.
  36. Dvorak J., Knotth D.R. Disomic and ditelosomic additions of diploid Agropyron elongatum chromosome to Triticum aestivum // Canad. J. Genet. and Cytol. 1974. V. 16(2). P. 399–417. https://doi.org/10.1139/g74-043
  37. Lammer D., Cai X., Arterburn M. et al. A single chromosome addition from Thinopyrum elongatum confers a polycarpic, perennial habit to annual wheat // J. Exp. Bot. 2004. V. 55(403). P. 1715–1720. https://doi.org/10.1093/jxb/erh209
  38. Упелниек В.П., Белов В.И., Иванова Л.П. и др. Наследие академика Н.В. Цицина – современное состояние и перспективы использования коллекции промежуточных пшенично-пырейных гибридов // Вавилов. журн. генет. и селекции. 2012. Т. 16. № 3. С. 667–674.
  39. Щуклина О.А., Завгородний С.В., Аленичева А.Д. и др. Связь элементов структуры колоса с продуктивностью растений образцов × Trititrigia cziczinii Tzvel. // Изв. Тимирязевской с.-хоз. академии. 2022. № 5. С. 57–69. https://doi.org/10.26897/0021-342X-2022-5-57-69
  40. Погост А.А., Лошакова П.О., Клименков Ф.И. и др. Новые яровые пшенично-пырейные гибриды, созданные в отделе отдаленной гибридизации Главного ботанического сада им. Н.В. Цицина РАН // Междунар. научно-исследов. журн. 2021. № 12. С. 114. https://doi.org/10.23670/IRJ.2021.114.12.024
  41. Белов В.И., Завгородний С.В. Селекционное достижение: Трититригия Памяти Любимовой // Пат. № 11203. Российская Федерация: 22.07.2020. Заявитель и патентообладатель – Главный ботанический сад им. Н.В. Цицина РАН. Заявл. 14.01.2019. Опубл. 22.07.2020.
  42. Han F.P., Fedak G. Molecular characterization of partial amphiploids from Triticum durum × tetraploid Thinopyrum elongatum as novel source of resistance to wheat Fusarium head blight // Proc. 10th Int. Wheat Genet. Symp. Paestum. 2003. P. 1148–1150.
  43. Miller S.S., Watson E.M., Lazebnik J. et al. Characterization of an alien source of resistance to Fusarium head blight transferred to Chinese spring wheat // Botany. 2011. V. 89. P. 301–311. https://doi.org/10.1139/b11-017
  44. Ceoloni C., Forte P., Kuzmanović L. et al. Cytogenetic mapping of a major locus for resistance to Fusarium headblight and crown rot of wheat on Thinopyrum elongatum 7EL and its pyramiding with valuable genes from a Th. ponticum homoeologous arm onto bread wheat 7DL // Theor. Appl. Genet. 2017. V. 130. P. 2005–2024. https://doi.org/10.1007/s00122-017-2939-8
  45. Konkin D., Hsueh Y.C., Kirzinger M. et al. Genomic sequencing of Thinopyrum elongatum chromosome arm 7EL, carrying fusarium head blight resistance, and characterization of its impact on the transcriptome of the introgressed line CS-7EL // BMC Genomics. 2022. V. 23(1). P. 228. https://doi.org/10.1186/s12864-022-08433-8
  46. Jauhar P.P., Peterson TH.S., Xu S. Cytogenetic and molecular characterization of a durum alien disomic addition line with enhanced tolerance to Fusarium head blight // Genome. 2009. V. 52. P. 467–483. https://doi.org/10.1139/G09-014
  47. Ковалышина А.Н., Дмитренко Ю.М. Источники устойчивости к возбудителю бурой ржавчины и их использование в создании сортов пшеницы мягкой // Plant Varieties Studying and Protection. 2017. Т. 13. № 4. С. 369–386. https://doi.org/10.21498/2518-1017.13.4.2017.117742
  48. Knott D.R. The inheritance of rust resistance. VI. The transfer of stem rust resistance from Agropyron elongatum to common wheat // Can. J. Plant Sci. 1961. V. 41. P. 109–123.
  49. Gough F.J., Merkle O.G. Inheritance of stem and leaf rust resistance in Agent and Agrus cultivars of Triticum aestivum // Phytopathology. 1971. V. 61. P. 1501–1505.
  50. Li Z., Li B., Tong Y. The contribution of distant hybridization with decaploid Agropyron elongatum to wheat improvement in China // J. Genet. Genomics. 2008. V. 35. P. 451–456. https://doi.org/10.1016/S1673-8527(08)60062-4
  51. Гультяева Е.И. Устойчивость российских сортов мягкой пшеницы к бурой ржавчине // 125 лет прикладной ботаники в России. Сб. тезисов. СПб: ФИЦ ВИР им. Н.И. Вавилова, 2019. С. 217–218.
  52. Плотникова Л.Я., Айдосова А.Т., Рыспекова А.Н., Мясников А.Ю. Интрогрессивные линии мягкой пшеницы с генами пырея удлиненного Agropyron elongatum устойчивые к листовым болезням на юге Западной Сибири // Вестник Омского ГАУ. 2014. № 4(16). С. 3–7.
  53. Сагендыкова А.Т. Создание селекционного материала яровой мягкой пшеницы устойчивого к болезням и абиотическим факторам среды на основе Agropyron elongatum: Автореф. дисс. … канд. с.-хоз. наук. Тюмень: Гос. аграр. ун-т Сев. Зауралья, 2021. 18 с.
  54. Плотникова Л.Я., Сагендыкова А.Т., Бережкова Г.А. Перспективные интрогрессивные линии яровой пшеницы с генами Agropyron elongatum устойчивые к септориозу в Западной Сибири // Вестник Казанского ГАУ. 2017. № 3(45). С. 39–45.
  55. Taeb M., Koebner R.M., Forster B.P. Genetic variation for waterlogging tolerance in the Triticeae and the chromosomal location of genes conferring waterlogging tolerance in Thinopyrum elongatum // Genome. 1993. V. 36(5). P. 825–30. https://doi.org/10.1139/g93-110
  56. Omielan J.A., Epstein E., Dvořák J. Salt tolerance and ionic relations of wheat as affected by individual chromosomes of salt-tolerant Lophopyrum elongatum // Genome. 1991. V. 34. P. 961–974.
  57. Размахнин Е.П., Размахнина Т.М., Козлов В.Е. и др. Получение высокоморозостойких форм пшенично-пырейных гибридов // Вавилов. журн. генет. и селекции. 2012. Т. 16. № 1. С. 240–249.
  58. Subedi M., Ghimire B., Bagwell J.W. et al. Wheat end-use quality: State of art, genetics, genomics-assisted improvement, future challenges, and opportunities // Front. Genet. 2023. V. 13. https://doi.org/10.3389/fgene.2022.1032601
  59. Maruyama-Funatsuki W., Takata K., Funatsuki H. et al. Identification and characterization of a novel LMW-s glutenin gene of a Canadian Western Extra-Strong wheat // J. of Cereal Sci. 2005. V. 41. Is. 1. P. 47–57. https://doi.org/10.1016/j.jcs.2004.07.003
  60. Fan S.H., Guo A.G. A study on the origin of HMW glutenin subunit 14 and 15 in Xiao Yan 6 // Acta Univ. Agric. Boreali-Occidentalia. 2000. V. 28(6). P. 1–5.
  61. Feng D.S., Xia G.M., Zhao S.Y., Chen F.G. Two quality-associated HMW glutenin subunits in a somatic hybrid line between Triticum aestivum and Agropyron elongatum // Theor. Appl. Genet. 2004. V. 110. P. 136–144. https://doi.org/10.1007/s00122-004-1810-x
  62. Luo Z., Chen F., Feng D., Xia G. LMW-GS genes in Agropyron elongatum and their potential value in wheat breeding // Theor. and Applied Genet. 2005. V. 111(2). P. 272–280. https://doi.org/10.1007/s00122-005-2021-9
  63. Ge W., Gao Y., Xu S. et al. Genome-wide identification, characteristics and expression of the prolamin genes in Thinopyrum elongatum // BMC Genomics. 2021. V. 22(1). P. 864. https://doi.org/10.1186/s12864-021-08088-x
  64. Крупин П.Ю., Дивашук М.Г., Фесенко И.А., Карлов Г.И. Адаптация микросателлитных SSR-маркеров пшеницы для анализа геномов пырея среднего, пырея удлиненного и пшенично-пырейных гибридов // Изв. Тимирязев. с.-хоз. академии. 2011. Т. 3. С. 49–57.
  65. Hu L.-J., Liu C., Zeng Z.-X. et al. Genomic rearrangement between wheat and Thinopyrum elongatum revealed by mapped functional markers // Genes Genom. 2012. V. 34. P. 67–75. https://doi.org/10.1007/s13258-011-0153-7
  66. Chen S., Gao Y., Zhu X. et al. Development of E-chromosome specific molecular markers for Thinopyrum elongatum in a wheat background // Crop Sci. 2015. V. 55. P. 2777–2785. https://doi.org/10.2135/cropsci2014.08.0539
  67. Dong L., Zhang K., Wang D. et al. High-throughput mining of E-genome-specific SNPs for characterizing Thinopyrum elongatum introgressions in common wheat // Mol. Ecol. Res. 2017. V. 17. P. 1318–1329. https://doi.org/10.1111/1755-0998.12659
  68. Lou H., Dong L., Zhang K. et al. High-throughput mining of E-genome-specific SNPs for characterizing Thinopyrum elongatum introgressions in common wheat // Mol. Ecol. Res. 2017. V. 17(6). P. 1318–1329. https://doi.org/10.1111/1755-0998.12659
  69. Chen S., Huang Z., Dai Y. et al. The development of 7E chromosome-specific molecular markers for Thinopyrum elongatum based on SLAF-seq technology // PLoS One. 2013. V. 8(6). https://doi.org/10.1371/journal.pone.0065122
  70. Wang H., Sun S., Ge W. et al. Horizontal gene transfer of Fhb7 from fungus underlies fusarium head blight resistance in wheat // Science. 2020. V. 368(6493). https://doi.org/10.1126/science.aba5435
  71. Haldar A., Tekieh F., Balcerzak M. et al. Introgression of Thinopyrum elongatum DNA fragments carrying resistance to fusarium head blight into Triticum aestivum cultivar Chinese Spring is associated with alteration of gene expression // Genome. 2021. V. 64(11). P. 1009–1020. https://doi.org/10.1139/gen-2020-0152
  72. Li Q., Niu Z., Bao Y. et al. Transcriptome analysis of genes related to resistance against powdery mildew in wheat – Thinopyrum alien addition disomic line germplasm SN6306 // Gene. 2016. V. 590(1). P. 5–17. https://doi.org/10.1016/j.gene.2016.06.005

Copyright (c) 2023 Т.В. Коростылева, А.Н. Шиян, Т.И. Одинцова

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies