Cellular and Epigenetic Aspects of Trained Immunity and Prospects for Creation of Universal Vaccines in the Face of Increasingly Frequent Pandemics

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The inevitability of pandemics creates an urgent requirement for emergency action to develop effective technologies to reduce harm to the human population in the period between the onset of an epidemic and the development and production of a vaccine. In this review we discuss the possibility of engineering universal vaccines. Such vaccines would exploit the nonspecific potential of innate immunity, would allow the population to be vaccinated when an unidentified pathogen appears, and would reduce disease severity until pathogen-specific vaccines become available. There are strong evidences that bacterial or viral vaccines such as BCG, measles and polio have heterologous protective effects against unrelated pathogens. This is attributed to the innate immune system’s ability to maintain the memory of past infections and use it to develop immune defenses against new ones. This effect has been called “trained” immunity. The use of trained immunity may also represent an important new approach to improving existing vaccines or to developing new vaccines that combine the induction of classical adaptive immune memory and innate immune memory. Such approaches can be boosted by genetic technology and prove extremely useful against future pandemics.

About the authors

I. V. Alekseenko

National Research Center “Kurchatov Institute”; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences

Email: edsverd@gmail.com
Russia, 123182, Moscow; Russia, 117997, Moscow

R. G. Vasilov

National Research Center “Kurchatov Institute”

Email: edsverd@gmail.com
Russia, 123182, Moscow

L. G. Kondratyeva

National Research Center “Kurchatov Institute”; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences

Author for correspondence.
Email: liakondratyeva@yandex.ru
Russia, 123182, Moscow; Russia, 117997, Moscow

S. V. Kostrov

National Research Center “Kurchatov Institute”

Email: edsverd@gmail.com
Russia, 123182, Moscow

I. P. Chernov

Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences

Email: edsverd@gmail.com
Russia, 117997, Moscow

E. D. Sverdlov

National Research Center “Kurchatov Institute”

Author for correspondence.
Email: edsverd@gmail.com
Russia, 123182, Moscow

References

  1. Garcia D. Redirect military budgets to tackle climate change and pandemics // Nature. 2020. V. 584. № 7822. P. 521–523. https://doi.org/10.1038/d41586-020-02460-9
  2. Steffen W., Richardson K., Rockstrom J. et al. Sustainability. Planetary boundaries: guiding human development on a changing planet // Science. 2015. V. 347. № 6223. https://doi.org/10.1126/science.1259855
  3. Vora N.M., Hannah L., Lieberman S. et al. Want to prevent pandemics? Stop spillovers // Nature. 2022. V. 605. № 7910. P. 419–422. https://doi.org/10.1038/d41586-022-01312-y
  4. Lennan M., Morgera E. The glasgow climate conference (COP26) // The Intern. J. of Marine and Coastal Law. 2022. V. 37. № 1. P. 137–151. https://doi.org/10.1163/15718085-bja10083
  5. Schiermeier Q. The US has left the Paris climate deal – what’s next? // Nature. 2020. https://doi.org/10.1038/d41586-020-03066-x
  6. Rounce D.R., Hock R., Maussion F. et al. Global glacier change in the 21st century: Every increase in temperature matters // Science. 2023. V. 379. № 6627. P. 78–83. https://doi.org/10.1126/science.abo1324
  7. Phelan A.L., Carlson C.J. A treaty to break the pandemic cycle // Science. 2022. V. 377. № 6605. P. 475–477. https://doi.org/10.1126/science.abq5917
  8. A Pandemic Era // Lancet Planet Health. 2021. V. 5. № 1. P. e1. https://doi.org/10.1016/s2542-5196(20)30305-3
  9. Fisher D., Suri S., Carson G. et al. What comes next in the COVID-19 pandemic? // Lancet. 2022. V. 399. № 10336. P. 1691–1692. https://doi.org/10.1016/S0140-6736(22)00580-3
  10. Baker R.E., Mahmud A.S., Miller I.F. et al. Infectious disease in an era of global change // Nat. Rev. Microbiol. 2022. V. 20. № 4. P. 193–205. https://doi.org/10.1038/s41579-021-00639-z
  11. Mulder W.J.M., Ochando J., Joosten L.A.B. et al. Therapeutic targeting of trained immunity // Nat. Rev. Drug Discov. 2019. V. 18. № 7. P. 553–566. https://doi.org/10.1038/s41573-019-0025-4
  12. Old L.J., Clarke D.A., Benacerraf B. Effect of Bacillus Calmette-Guerin infection on transplanted tumours in the mouse // Nature. 1959. V. 184 (Suppl. 5). P. 291–292. https://doi.org/10.1038/184291a0
  13. Gong W., An H., Wang J. et al. The natural effect of BCG vaccination on COVID-19: The debate continues // Front. Immunol. 2022. V. 13. https://doi.org/10.3389/fimmu.2022.953228
  14. Gonzalez-Perez M., Sanchez-Tarjuelo R., Shor B. et al. The BCG vaccine for COVID-19: First verdict and future directions // Front. Immunol. 2021. V. 12. https://doi.org/10.3389/fimmu.2021.632478
  15. Carlson C.J., Phelan A.L. A choice between two futures for pandemic recovery // Lancet Planet Health. 2020. V. 4. № 12. P. e545–e546. https://doi.org/10.1016/S2542-5196(20)30245-X
  16. Hernandez J., Meisner J., Bardosh K., Rabinowitz P. Prevent pandemics and halt climate change? Strengthen land rights for Indigenous peoples // Lancet Planet Health. 2022. V. 6. № 5. P. e381–e382. https://doi.org/10.1016/S2542-5196(22)00069-9
  17. Jones M., Mills D., Gray R. Expecting the unexpected? Improving rural health in the era of bushfires, novel coronavirus and climate change // Aust. J. Rural Health. 2020. V. 28. № 2. P. 107–109. https://doi.org/10.1111/ajr.12623
  18. The Lancet Global collaboration for health: rhetoric versus reality // Lancet. 2020. V. 396. № 10253. P. 735. https://doi.org/10.1016/S0140-6736(20)31900-0
  19. Murdoch D.R., Crengle S., Frame B. et al. We have been warned–preparing now to prevent the next pandemic // N.Z. Med. J. 2021. V. 134. № 1536. P. 8–11.
  20. Selin N.E. Lessons from a pandemic for systems-oriented sustainability research // Sci. Adv. 2021. V. 7. № 22.https://doi.org/10.1126/sciadv.abd8988
  21. Folke C., Polasky S., Rockstrom J. et al. Our future in the Anthropocene biosphere // Ambio. 2021. V. 50. № 4. P. 834–869. https://doi.org/10.1007/s13280-021-01544-8
  22. Cousins T., Pentecost M., Alvergne A. et al. The changing climates of global health // BMJ Glob Health. 2021. V. 6. № 3. https://doi.org/10.1136/bmjgh-2021-005442
  23. Sleepwalking into the next pandemic // Nat. Med. 2022. V. 28. № 7. P. 1325. https://doi.org/10.1038/s41591-022-01918-9
  24. Meyer C.U., Zepp F. Principles in immunology for the design and development of vaccines // Methods Mol. Biol. 2022. V. 2410. P. 27–56. https://doi.org/10.1007/978-1-0716-1884-4_2
  25. Arico E., Bracci L., Castiello L. et al. Exploiting natural antiviral immunity for the control of pandemics: Lessons from Covid-19 // Cytokine Growth Factor Rev. 2022. V. 63. P. 23–33. https://doi.org/10.1016/j.cytogfr.2021.12.001
  26. Yan N., Chen Z.J. Intrinsic antiviral immunity // Nat. Immunol. 2012. V. 13. № 3. P. 214–222. https://doi.org/10.1038/ni.2229
  27. Netea M.G., Dominguez-Andres J., Barreiro L.B. et al. Defining trained immunity and its role in health and disease // Nat. Rev. Immunol. 2020. V. 20. № 6. P. 375–388. https://doi.org/10.1038/s41577-020-0285-6
  28. Netea M.G., Giamarellos-Bourboulis E.J., Dominguez-Andres J. et al. Trained immunity: A tool for reducing susceptibility to and the severity of SARS-CoV-2 infection // Cell. 2020. V. 181. № 5. P. 969–977. https://doi.org/10.1016/j.cell.2020.04.042
  29. Paul S., Hmar E.B., Sharma H.K. Strengthening immunity with immunostimulants: a review // Curr. Trends Pharm. Res. 2020. V. 7. № 1.
  30. Anaeigoudari A., Mollaei H.R., Arababadi M.K., Nosratabadi R. Severe acute respiratory syndrome coronavirus 2: The role of the main components of the innate immune system // Inflammation. 2021. V. 44. № 6. P. 2151–2169. https://doi.org/10.1007/s10753-021-01519-7
  31. Fraschilla I., Amatullah H., Jeffrey K.L. One genome, many cell states: epigenetic control of innate immunity // Curr. Opin. Immunol. 2022. V. 75. https://doi.org/10.1016/j.coi.2022.102173
  32. Ong G.H., Lian B.S.X., Kawasaki T., Kawai T. Exploration of pattern recognition receptor agonists as candidate adjuvants // Front. Cell. Infect. Microbiol. 2021. V. 11. https://doi.org/10.3389/fcimb.2021.745016
  33. Labarrere C.A., Kassab G.S. Pattern recognition proteins: First line of defense against coronaviruses // Front. Immunol. 2021. V. 12. https://doi.org/10.3389/fimmu.2021.652252
  34. Marshall J.S., Warrington R., Watson W., Kim H.L. An introduction to immunology and immunopathology // Allergy Asthma Clin. Immunol. 2018. V. 14. Suppl. 2. P. 49. https://doi.org/10.1186/s13223-018-0278-1
  35. Chen L., Deng H., Cui H. et al. Inflammatory responses and inflammation-associated diseases in organs // Oncotarget. 2018. V. 9. № 6. P. 7204–7218. https://doi.org/10.18632/oncotarget.23208
  36. Jentho E., Weis S. DAMPs and Innate Immune Training // Front. Immunol. 2021. V. 12. https://doi.org/10.3389/fimmu.2021.699563
  37. Zhang J.M., An J. Cytokines, inflammation, and pain // Int. Anesthesiol. Clin. 2007. V. 45. № 2. P. 27–37. https://doi.org/10.1097/AIA.0b013e318034194e
  38. Lazzaro B.P., Tate A.V. Balancing sensitivity, risk, and immunopathology in immune regulation // Curr. Opin. Insect. Sci. 2022. V. 50. https://doi.org/10.1016/j.cois.2022.100874
  39. McDaniel M.M., Meibers H.E., Pasare C. Innate control of adaptive immunity and adaptive instruction of innate immunity: bi-directional flow of information // Curr. Opin. Immunol. 2021. V. 73. P. 25–33. https://doi.org/10.1016/j.coi.2021.07.013
  40. Vincenzo B., Asif I.J., Nikolaos P., Francesco M. Adaptive immunity and inflammation // Int. J. Inflam. 2015. V. 2015. https://doi.org/10.1155/2015/575406
  41. Kiss A. Inflammation in focus: The beginning and the end // Pathol. Oncol. Res. 2021. V. 27. https://doi.org/10.3389/pore.2021.1610136
  42. Tercan H., Riksen N.P., Joosten L.A.B. et al. Trained immunity: Long-term adaptation in innate immune responses // Arterioscler. Thromb. Vasc. Biol. 2021. V. 41. № 1. P. 55–61. https://doi.org/10.1161/ATVBAHA.120.314212
  43. Ziogas A., Netea M.G. Trained immunity-related vaccines: innate immune memory and heterologous protection against infections // Trends Mol. Med. 2022. V. 28. № 6. P. 497–512. https://doi.org/10.1016/j.molmed.2022.03.009
  44. Barton G.M. A calculated response: Control of inflammation by the innate immune system // J. Clin. Invest. 2008. V. 118. № 2. P. 413–420. https://doi.org/10.1172/JCI34431
  45. Sun L., Yang X., Yuan Z., Wang H. Metabolic reprogramming in immune response and tissue inflammation // Arterioscler. Thromb. Vasc. Biol. 2020. V. 40. № 9. P. 1990–2001. https://doi.org/10.1161/ATVBAHA.120.314037
  46. Domínguez-Andrés J., van Crevel R., Divangahi M., Netea M. G. Designing the next generation of vaccines: Relevance for future pandemics // MBio. 2020. V. 11. № 6. https://doi.org/10.1128/mBio.02616-20
  47. Netea M.G., Joosten L.A., Latz E. et al. Trained immunity: A program of innate immune memory in health and disease // Science. 2016. V. 352. № 6284. https://doi.org/10.1126/science.aaf1098
  48. Kopf M., Nielsen P.J. Training myeloid precursors with fungi, bacteria and chips // Nat. Immunol. 2018. V. 19. № 4. P. 320–322. https://doi.org/10.1038/s41590-018-0073-7
  49. Larenas-Linnemann D., Rodriguez-Perez N., Arias-Cruz A. et al. Enhancing innate immunity against virus in times of COVID-19: Trying to untangle facts from fictions // World Allergy Organ. J. 2020. V. 13. № 11. https://doi.org/10.1016/j.waojou.2020.100476
  50. Geckin B., Konstantin Fohse F., Dominguez-Andres J., Netea M.G. Trained immunity: implications for vaccination // Curr. Opin. Immunol. 2022. V. 77. https://doi.org/10.1016/j.coi.2022.102190
  51. Dominguez-Andres J., Netea M.G. Long-term reprogramming of the innate immune system // J. Leukoc. Biol. 2019. V. 105. № 2. P. 329–338. https://doi.org/10.1002/JLB.MR0318-104R
  52. De Zuani M., Fric J. Train the trainer: Hematopoietic stem cell control of trained immunity // Front. Immunol. 2022. V. 13. https://doi.org/10.3389/fimmu.2022.827250
  53. Arneth B. Trained innate immunity // Immunol. Res. 2021. V. 69. № 1. P. 1–7. https://doi.org/10.1007/s12026-021-09170-y
  54. Bekkering S., Blok B.A., Joosten L.A. et al. In vitro experimental model of trained innate immunity in human primary monocytes // Clin. Vaccine Immunol. 2016. V. 23. № 12. P. 926–933. https://doi.org/10.1128/CVI.00349-16
  55. Ciarlo E., Heinonen T., Theroude C. et al. Trained immunity confers broad-spectrum protection against bacterial infections // J. Infect. Dis. 2020. V. 222. № 11. P. 1869–1881. https://doi.org/10.1093/infdis/jiz692
  56. Dominguez-Andres J., Arts R.J.W., Bekkering S. et al. In vitro induction of trained immunity in adherent human monocytes // STAR Protoc. 2021. V. 2. № 1. https://doi.org/10.1016/j.xpro.2021.100365
  57. Drummer C.V., Saaoud F., Shao Y. et al. Trained immunity and reactivity of macrophages and endothelial cells // Arterioscler. Thromb. Vasc. Biol. 2021. V. 41. № 3. P. 1032–1046. https://doi.org/10.1161/ATVBAHA.120.315452
  58. Hellinga A.H., Tsallis T., Eshuis T. et al. In vitro induction of trained innate immunity by bIgG and whey protein extracts // Int. J. Mol. Sci. 2020. V. 21. № 23. https://doi.org/10.3390/ijms21239077
  59. Mourits V.P., Arts R.J.W., Novakovic B. et al. The role of Toll-like receptor 10 in modulation of trained immunity // Immunology. 2020. V. 159. № 3. P. 289–297. https://doi.org/10.1111/imm.13145
  60. Netea M.G., Schlitzer A., Placek K. et al. Innate and adaptive immune memory: An evolutionary continuum in the host’s response to pathogens // Cell Host Microbe. 2019. V. 25. № 1. P. 13–26. https://doi.org/10.1016/j.chom.2018.12.006
  61. Pasco S.T., Anguita J. Lessons from Bacillus calmette-guerin: Harnessing trained immunity for vaccine development // Cells. 2020. V. 9. № 9. https://doi.org/10.3390/cells9092109
  62. Peignier A., Parker D. Trained immunity and host-pathogen interactions // Cell. Microbiol. 2020. V. 22. № 12. https://doi.org/10.1111/cmi.13261
  63. Locht C., Lerm M. Good old BCG – what a century-old vaccine can contribute to modern medicine // J. Intern. Med. 2020. V. 288. № 6. P. 611–613. https://doi.org/10.1111/joim.13195
  64. Moulson A.J., Av-Gay Y. BCG immunomodulation: From the “hygiene hypothesis” to COVID-19 // Immunobiology. 2021. V. 226. № 1. https://doi.org/10.1016/j.imbio.2020.152052
  65. Taks E.J.M., Moorlag S., Netea M.G., van der Meer J.W.M. Shifting the immune memory paradigm: Trained immunity in viral infections // Annu. Rev. Virol. V. 9. № 1. P. 469–489. https://doi.org/10.1146/annurev-virology-091919-072546
  66. Alsulaiman J.W., Khasawneh A.I., Kheirallah K.A. Could “trained immunity” be induced by live attenuated vaccines protect against COVID-19? Review of available evidence // J. Infect. Dev. Ctries. 2020. V. 14. № 9. P. 957–962. https://doi.org/10.3855/jidc.12805
  67. Chumakov K., Avidan M.S., Benn C.S. et al. Old vaccines for new infections: Exploiting innate immunity to control COVID-19 and prevent future pandemics // Proc. Natl Acad. Sci. USA. 2021. V. 118. № 21. https://doi.org/10.1073/pnas.2101718118
  68. Bekkering S., Dominguez-Andres J., Joosten L.A.B. et al. Trained immunity: Reprogramming innate immunity in health and disease // Annu. Rev. Immunol. 2021. V. 39. P. 667–693. https://doi.org/10.1146/annurev-immunol-102119-073855
  69. Bindu S., Dandapat S., Manikandan R. et al. Prophylactic and therapeutic insights into trained immunity: A renewed concept of innate immune memory // Hum. Vaccin. Immunother. 2022. V. 18. № 1. https://doi.org/10.1080/21645515.2022.2040238
  70. Sherwood E.R., Burelbach K.R., McBride M.A. et al. Innate immune memory and the host response to infection // J. Immunol. 2022. V. 208. № 4. P. 785–792. https://doi.org/10.4049/jimmunol.2101058
  71. Marin-Hernandez D., Nixon D.F., Hupert N. Heterologous vaccine interventions: boosting immunity against future pandemics // Mol. Med. 2021. V. 27. № 1. P. 54. https://doi.org/10.1186/s10020-021-00317-z
  72. Hu Z., Lu S.H., Lowrie D.B., Fan X.Y. Trained immunity: A Yin-Yang balance // MedComm. 2022. V. 3. № 1. https://doi.org/10.1002/mco2.121
  73. Ross E.A., Devitt A., Johnson J.R. Macrophages: The Good, the Bad, and the Gluttony // Front. Immunol. 2021. V. 12. https://doi.org/10.3389/fimmu.2021.708186
  74. Prame Kumar K., Nicholls A.J., Wong C.H.Y. Partners in crime: neutrophils and monocytes/macrophages in inflammation and disease // Cell Tissue Res. 2018. V. 371. № 3. P. 551–565. https://doi.org/10.1007/s00441-017-2753-2
  75. Rawat S., Vrati S., Banerjee A. Neutrophils at the crossroads of acute viral infections and severity // Mol. Aspects Med. 2021. V. 81. https://doi.org/10.1016/j.mam.2021.100996
  76. Schulz C., Petzold T., Ishikawa-Ankerhold H. Macrophage regulation of granulopoiesis and neutrophil functions // Antioxid. Redox Signal. 2021. V. 35. № 3. P. 182–191. https://doi.org/10.1089/ars.2020.8203
  77. Acevedo O.A., Berrios R.V., Rodriguez-Guilarte L. et al. Molecular and cellular mechanisms modulating trained immunity by various cell types in response to pathogen encounter // Front. Immunol. 2021. V. 12. https://doi.org/10.3389/fimmu.2021.745332
  78. Eiz-Vesper B., Schmetzer H.M. Antigen-presenting cells: potential of proven und new players in immune therapies // Transfus. Med. Hemother. 2020. V. 47. № 6. P. 429–431. https://doi.org/10.1159/000512729
  79. Arango Duque G., Descoteaux A. Macrophage cytokines: Involvement in immunity and infectious diseases // Front. Immunol. 2014. V. 5. https://doi.org/10.3389/fimmu.2014.00491
  80. Yu S., Ge H., Li S., Qiu H.J. Modulation of macrophage polarization by viruses: turning off/on host antiviral responses // Front. Microbiol. 2022. V. 13. https://doi.org/10.3389/fmicb.2022.839585
  81. Banete A., Barilo J., Whittaker R., Basta S. The activated macrophage – A tough fortress for virus invasion: How viruses strike back // Front. Microbiol. 2021. V. 12. https://doi.org/10.3389/fmicb.2021.803427
  82. Patel S., Werstuck G.H. Macrophage function and the role of GSK3 // Int. J. Mol. Sci. 2021. V. 22. № 4. P. 2206. https://doi.org/10.3390/ijms22042206
  83. Su D.L., Lu Z.M., Shen M.N. et al. Roles of pro- and anti-inflammatory cytokines in the pathogenesis of SLE // J. Biomed. Biotechnol. 2012. V. 2012. https://doi.org/10.1155/2012/347141
  84. Sanchez-Paulete A.R., Teijeira A., Cueto F.J. et al. Antigen cross-presentation and T-cell cross-priming in cancer immunology and immunotherapy // Ann. Oncol. 2017. V. 28. Suppl. 12. P. xii44–xii55. https://doi.org/10.1093/annonc/mdx237
  85. Thaiss C.A., Semmling V., Franken L. et al. Chemo-kines: A new dendritic cell signal for T-cell activation // Front. Immunol. 2011. V. 2. https://doi.org/10.3389/fimmu.2011.00031
  86. Kurts C., Robinson B.W., Knolle P.A. Cross-priming in health and disease // Nat. Rev. Immunol. 2010. V. 10. № 6. P. 403–414. https://doi.org/10.1038/nri2780
  87. Kumar V. Innate lymphoid cell and adaptive immune cell cross-talk: A talk meant not to forget // J. Leukoc. Biol. 2020. V. 108. № 1. P. 397–417. https://doi.org/10.1002/JLB.4MIR0420-500RRR
  88. Bennstein S.B., Uhrberg M. Biology and therapeutic potential of human innate lymphoid cells // FEBS J. 2022. V. 289. № 14. P. 3967–3981. https://doi.org/10.1111/febs.15866
  89. Pelletier A., Stockmann C. The Metabolic Basis of ILC Plasticity // Front. Immunol. 2022. V. 13. https://doi.org/10.3389/fimmu.2022.858051
  90. Favaro R.R., Phillips K., Delaunay-Danguy R. et al. Emerging concepts in innate lymphoid cells, memory, and reproduction // Front. Immunol. 2022. V. 13. https://doi.org/10.3389/fimmu.2022.824263
  91. Cobb L.M., Verneris M.R. Therapeutic manipulation of innate lymphoid cells // JCI Insight. 2021. V. 6. № 6. https://doi.org/10.1172/jci.insight.146006
  92. Yin G., Zhao C., Pei W. Crosstalk between macrophages and innate lymphoid cells (ILCs) in diseases // Int. Immunopharmacol. 2022. V. 110. https://doi.org/10.1016/j.intimp.2022.108937
  93. Verma D., Verma M., Mishra R. Stem cell therapy and innate lymphoid cells // Stem Cells Int. 2022. V. 2022. https://doi.org/10.1155/2022/3530520
  94. Mitroulis I., Ruppova K., Wang B. et al. Modulation of myelopoiesis progenitors is an integral component of trained immunity // Cell. 2018. V. 172. № 1–2. P. 147–161 e12. https://doi.org/10.1016/j.cell.2017.11.034
  95. Song W.M., Colonna M. Immune training unlocks innate potential // Cell. 2018. V. 172. № 1–2. P. 3–5. https://doi.org/10.1016/j.cell.2017.12.034
  96. Fanucchi S., Dominguez-Andres J., Joosten L.A.B. et al. The intersection of epigenetics and metabolism in trained immunity // Immunity. 2021. V. 54. № 1. P. 32–43. https://doi.org/10.1016/j.immuni.2020.10.011
  97. Saeed S., Quintin J., Kerstens H.H. et al. Epigenetic programming of monocyte-to-macrophage differentiation and trained innate immunity // Science. 2014. V. 345. № 6204. https://doi.org/10.1126/science.1251086
  98. Ferreira A.V., Domiguez-Andres J., Netea M.G. The role of cell metabolism in innate immune memory // J. Innate Immun. 2022. V. 14. № 1. P. 42–50. https://doi.org/10.1159/000512280
  99. Diskin C., Palsson-McDermott E.M. Metabolic modulation in macrophage effector function // Front. Immunol. 2018. V. 9. https://doi.org/10.3389/fimmu.2018.00270
  100. Llibre A., Dedicoat M., Burel J.G. et al. Host immune-metabolic adaptations upon mycobacterial infections and associated co-morbidities // Front. Immunol. 2021. V. 12. https://doi.org/10.3389/fimmu.2021.747387
  101. Gauthier T., Chen W. Modulation of macrophage immunometabolism: a new approach to fight infections // Front. Immunol. 2022. V. 13. https://doi.org/10.3389/fimmu.2022.780839
  102. Saini A., Ghoneim H.E., Lio C.J. et al. Gene regulatory circuits in innate and adaptive immune cells // Annu. Rev. Immunol. 2022. V. 40. P. 387–411. https://doi.org/10.1146/annurev-immunol-101320-025949
  103. Topfer E., Boraschi D., Italiani P. Innate immune memory: The latest frontier of adjuvanticity // J. Immunol. Res. 2015. V. 2015. https://doi.org/10.1155/2015/478408
  104. Pei G., Dorhoi A. NOD-like receptors: guards of cellular homeostasis perturbation during infection // Int. J. Mol. Sci. 2021. V. 22. № 13. https://doi.org/10.3390/ijms22136714
  105. Duan T., Du Y., Xing C. et al. Toll-like receptor signaling and its role in cell-mediated immunity // Front. Immunol. 2022. V. 13. https://doi.org/10.3389/fimmu.2022.812774
  106. Behzadi P., Garcia-Perdomo H.A., Karpinski T.M. Toll-like receptors: general molecular and structural biology // J. Immunol. Res. 2021. V. 2021. https://doi.org/10.1155/2021/9914854
  107. Jannuzzi G.P., de Almeida J.R.F., Paulo L.N.M. et al. Intracellular PRRs activation in targeting the immune response against fungal infections // Front. Cell. Infect. Microbiol. 2020. V. 10. https://doi.org/10.3389/fcimb.2020.591970
  108. Lee B.L., Barton G.M. Trafficking of endosomal Toll-like receptors // Trends Cell. Biol. 2014. V. 24. № 6. P. 360–369. https://doi.org/10.1016/j.tcb.2013.12.002
  109. Blasius A.L., Beutler B. Intracellular toll-like receptors // Immunity. 2010. V. 32. № 3. P. 305–315. https://doi.org/10.1016/j.immuni.2010.03.012
  110. Petes C., Odoardi N., Gee K. The toll for trafficking: Toll-like receptor 7 delivery to the endosome // Front. Immunol. 2017. V. 8. https://doi.org/10.3389/fimmu.2017.01075
  111. Xia P., Wu Y., Lian S. et al. Research progress on Toll-like receptor signal transduction and its roles in antimicrobial immune responses // Appl. Microbiol. Biotechnol. 2021. V. 105. № 13. P. 5341–5355. https://doi.org/10.1007/s00253-021-11406-8
  112. Huang L., Ge X., Liu Y. et al. The role of toll-like receptor agonists and their nanomedicines for tumor immunotherapy // Pharmaceutics. 2022. V. 14. № 6. https://doi.org/10.3390/pharmaceutics14061228
  113. Diaz-Dinamarca D.A., Salazar M.L., Castillo B.N. et al. Protein-based adjuvants for vaccines as immunomodulators of the innate and adaptive immune response: Current knowledge, challenges, and future opportunities // Pharmaceutics. 2022. V. 14. № 8. https://doi.org/10.3390/pharmaceutics14081671
  114. Sartorius R., Trovato M., Manco R. et al. Exploiting viral sensing mediated by Toll-like receptors to design innovative vaccines // NPJ Vaccines. 2021. V. 6. № 1. P. 127. https://doi.org/10.1038/s41541-021-00391-8
  115. Rumpret M., von Richthofen H.J., Peperzak V., Meyaard L. Inhibitory pattern recognition receptors // J. Exp. Med. 2022. V. 219. № 1. https://doi.org/10.1084/jem.20211463
  116. Mielcarska M.B., Bossowska-Nowicka M., Toka F.N. Cell surface expression of endosomal toll-like receptors-a necessity or a superfluous duplication? // Front. Immunol. 2020. V. 11. https://doi.org/10.3389/fimmu.2020.620972
  117. Turley J.L., Lavelle E.P. Resolving adjuvant mode of action to enhance vaccine efficacy // Curr. Opin. Immunol. 2022. V. 77. https://doi.org/10.1016/j.coi.2022.102229
  118. Pulendran B., Arunachalam P.S., O’Hagan D.V. Emerging concepts in the science of vaccine adjuvants // Nat. Rev. Drug. Discov. 2021. № 20. P. 454–475. https://doi.org/10.1038/s41573-021-00163-y
  119. Kumar S., Sunagar R., Gosselin E. Bacterial protein toll-like-receptor agonists: A novel perspective on vaccine adjuvants // Front. Immunol. 2019. V. 10. https://doi.org/10.3389/fimmu.2019.01144
  120. Yang J.X., Tseng J.C., Yu G.Y. et al. Recent advances in the development of toll-like receptor agonist-based vaccine adjuvants for infectious diseases // Pharmaceutics. 2022. V. 14. № 2. https://doi.org/10.3390/pharmaceutics14020423
  121. Xu Z., Moyle P.M. Bioconjugation approaches to producing subunit vaccines composed of protein or peptide antigens and covalently attached toll-like receptor ligands // Bioconjug. Chem. 2018. V. 29. № 3. P. 572–586. https://doi.org/10.1021/acs.bioconjchem.7b00478
  122. Lee W., Suresh M. Vaccine adjuvants to engage the cross-presentation pathway // Front. Immunol. 2022. V. 13. https://doi.org/10.3389/fimmu.2022.940047
  123. Kaur A., Baldwin J., Brar D. et al. Toll-like receptor (TLR) agonists as a driving force behind next-generation vaccine adjuvants and cancer therapeutics // Curr. Opin. Chem. Biol. 2022. V. 70. https://doi.org/10.1016/j.cbpa.2022.102172
  124. Farooq M., Batool M., Kim M.S., Choi S. Toll-like receptors as a therapeutic target in the era of immunotherapies // Front. Cell. Dev. Biol. 2021. V. 9. https://doi.org/10.3389/fcell.2021.756315
  125. Bogunovic D., Manches O., Godefroy E. et al. TLR4 engagement during TLR3-induced proinflammatory signaling in dendritic cells promotes IL-10-mediated suppression of antitumor immunity // Cancer Res. 2011. V. 71. № 16. P. 5467–5476. https://doi.org/10.1158/0008-5472.CAN-10-3988
  126. Goodridge H.S., Ahmed S.S., Curtis N. et al. Harnessing the beneficial heterologous effects of vaccination // Nat. Rev. Immunol. 2016. V. 16. № 6. P. 392–400. https://doi.org/10.1038/nri.2016.43
  127. Shann F. The non-specific effects of vaccines // Arch. Dis. Child. 2010. V. 95. № 9. P. 662–667. https://doi.org/10.1136/adc.2009.157537
  128. Aaby P., Roth A., Ravn H. et al. Randomized trial of BCG vaccination at birth to low-birth-weight children: Beneficial nonspecific effects in the neonatal period? // J. Infect. Dis. 2011. V. 204. № 2. P. 245–252. https://doi.org/10.1093/infdis/jir240
  129. Bagcchi S. WHO’s global tuberculosis report 2022 // The Lancet Microbe. 2023. V. 4. № 1. P. e20. https://doi.org/10.1016/S2666-5247(22)00359-7
  130. Escobar L.E., Molina-Cruz A., Barillas-Mury C. BCG vaccine protection from severe coronavirus disease 2019 (COVID-19) // Proc. Natl Acad. Sci. USA. 2020. V. 117. № 30. P. 17720–17726. https://doi.org/10.1073/pnas.2008410117
  131. Aaby P., Benn C.S. Developing the concept of beneficial non-specific effect of live vaccines with epidemiological studies // Clin. Microbiol. Infect. 2019. V. 25. № 12. P. 1459–1467. https://doi.org/10.1016/j.cmi.2019.08.011
  132. Larsen S.E., Williams B.D., Rais M. et al. It takes a village: The multifaceted immune response to Mycobacterium tuberculosis infection and vaccine-induced immunity // Front. Immunol. 2022. V. 13. https://doi.org/10.3389/fimmu.2022.840225
  133. Nieuwenhuizen N.E., Kulkarni P.S., Shaligram U. et al. The recombinant bacille calmette-guerin vaccine VPM1002: Ready for clinical efficacy testing // Front. Immunol. 2017. V. 8. https://doi.org/10.3389/fimmu.2017.01147
  134. Nieuwenhuizen N.E., Kaufmann S.H.E. Next-generation vaccines based on bacille calmette-guerin // Front. Immunol. 2018. V. 9. https://doi.org/10.3389/fimmu.2018.00121
  135. Camilli G., Bohm M., Piffer A.P. et al. beta-Glucan-induced reprogramming of human macrophages inhibits NLRP3 inflammasome activation in cryopyrinopathies // J. Clin. Invest. 2020. V. 130. № 9. P. 4561–4573. https://doi.org/10.1172/JCI134778
  136. Moorlag S., van Deuren R.P., van Werkhoven C.H. et al. Safety and COVID-19 symptoms in individuals recently vaccinated with BCG: A retrospective cohort study // Cell. Rep. Med. 2020. V. 1. № 5. https://doi.org/10.1016/j.xcrm.2020.100073
  137. Smith S.G., Kleinnijenhuis J., Netea M.G., Dockrell H.M. Whole blood profiling of bacillus calmette-guerin-induced trained innate immunity in infants identifies epidermal growth factor, IL-6, platelet-derived growth factor-AB/BB, and natural killer cell activation // Front. Immunol. 2017. V. 8. https://doi.org/10.3389/fimmu.2017.00644
  138. Lee M.H., Kim B.J. COVID-19 vaccine development based on recombinant viral and bacterial vector systems: Combinatorial effect of adaptive and trained immunity // J. Microbiol. 2022. V. 60. № 3. P. 321–334. https://doi.org/10.1007/s12275-022-1621-2
  139. Gupta P.K. New disease old vaccine: Is recombinant BCG vaccine an answer for COVID-19? // Cell. Immunol. 2020. V. 356. https://doi.org/10.1016/j.cellimm.2020.104187
  140. Kaur G., Singh S., Nanda S. et al. Fiction and facts about BCG imparting trained immunity against COVID-19 // Vaccines (Basel). 2022. V. 10. № 7. https://doi.org/10.3390/vaccines10071006
  141. Melenotte C., Silvin A., Goubet A.G. et al. Immune responses during COVID-19 infection // Oncoimmunology. 2020. V. 9. № 1. https://doi.org/10.1080/2162402X.2020.1807836
  142. Kleen T.O., Galdon A.A., MacDonald A.S., Dalgleish A.G. Mitigating coronavirus induced dysfunctional immunity for at-risk populations in COVID-19: Trained immunity, BCG and “New Old Friends” // Front. Immunol. 2020. V. 11. https://doi.org/10.3389/fimmu.2020.02059
  143. Seo S.U., Seong B.L. Prospects on repurposing a live attenuated vaccine for the control of unrelated infections // Front. Immunol. 2022. V. 13. https://doi.org/10.3389/fimmu.2022.877845
  144. Basak P., Sachdeva N., Dayal D. Can BCG vaccine protect against COVID-19 via trained immunity and tolerogenesis? // Bioessays. 2021. V. 43. № 3. https://doi.org/10.1002/bies.202000200
  145. Mysore V., Cullere X., Settles M.L. et al. Protective heterologous T cell immunity in COVID-19 induced by the trivalent MMR and Tdap vaccine antigens // Med (N.Y.). 2021. V. 2. № 9. P. 1050–1071 e7. https://doi.org/10.1016/j.medj.2021.08.004
  146. Malik Y.S., Ansari M.I., Ganesh B. et al. BCG vaccine: A hope to control COVID-19 pandemic amid crisis // Hum. Vaccin. Immunother. 2020. V. 16. № 12. P. 2954–2962. https://doi.org/10.1080/21645515.2020.1818522
  147. Jung H.E., Lee H.K. Current understanding of the innate control of toll-like receptors in response to SARS-CoV-2 infection // Viruses. 2021. V. 13. № 11. https://doi.org/10.3390/v13112132
  148. Kayesh M.E.H., Kohara M., Tsukiyama-Kohara K. An overview of recent insights into the response of TLR to SARS-CoV-2 infection and the potential of TLR agonists as SARS-CoV-2 vaccine adjuvants // Viruses. 2021. V. 13. № 11. https://doi.org/10.3390/v13112302
  149. Gong W., Aspatwar A., Wang S. et al. COVID-19 pandemic: SARS-CoV-2 specific vaccines and challenges, protection via BCG trained immunity, and clinical trials // Expert Rev. Vaccines. 2021. V. 20. № 7. P. 857–880. https://doi.org/10.1080/14760584.2021.1938550
  150. Brueggeman J.M., Zhao J., Schank M. et al. Trained immunity: An overview and the impact on COVID-19 // Front. Immunol. 2022. V. 13. https://doi.org/10.3389/fimmu.2022.837524
  151. Cox A., Cevik H., Feldman H.A. et al. Targeting natural killer cells to enhance vaccine responses // Trends Pharmacol. Sci. 2021. V. 42. № 9. P. 789–801. https://doi.org/10.1016/j.tips.2021.06.004

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (139KB)
3.

Download (467KB)
4.

Download (238KB)
5.

Download (414KB)
6.

Download (425KB)
7.

Download (923KB)

Copyright (c) 2023 И.В. Алексеенко, Р.Г. Василов, Л.Г. Кондратьева, С.В. Костров, И.П. Чернов, Е.Д. Свердлов

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies