Genetic Variation in Titin in Patients with Hypertrophic and Non-Compact Cardiomyopathy

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Using NGS, the coding sequence of the TTN gene was sequenced in patients with left ventricular non-compaction cardiomyopathy (LVNC, 44 individuals) and hypertrophic cardiomyopathy (HCM, 74 individuals), as well as in the control (194 individuals), and 9 nucleotide variants leading to truncated titin (TTNtv) and 372 missense variants were identified. A comparative analysis of the genetic variability of titin between the groups of patients with LVNC and HCM and the control sample was carried out in terms of the type of mutations and their localization in the exons of genes, as well as in the sarcomeric and functional domains of the protein. The role of TTNtv in the development of LVNC was confirmed, and the significance of additional variants in the same gene or in other genes associated with various cardiomyopathies for the phenotypic implementation of TTNtv was demonstrated. 75% of patients with TTNtv had a dilated LVNC phenotype. Missense substitutions in the TTN gene were found both among the patients with LVNC and HCM, and in people in the control sample, which indirectly confirms that most missense variants in this gene are benign. The paper identifies and lists highly mutable and conserved exons of the TTN gene and also presents a list of missense mutations with possible clinical significance in relation to the structural pathology of the myocardium, including new variants. It was shown that the majority of pathogenic and potentially significant mutations were located in the A-zone of the sarcomere. In all the groups, about 30–50% of new variants were identified. Probably, many of them are neutral and are of exclusively population interest.

About the authors

N. N. Chakova

Institute of Genetics and Cytology of the National Academy of Sciences of Belarus

Author for correspondence.
Email: n.chakova@igc.by
Republic Belarus, 220072, Minsk

R. S. Shulinski

Institute of Genetics and Cytology of the National Academy of Sciences of Belarus

Email: n.chakova@igc.by
Republic Belarus, 220072, Minsk

S. M. Komissarova

Republican Scientific and Practical Centre “Cardiology”

Email: n.chakova@igc.by
Republic Belarus, 220036, Minsk

T. V. Dolmatovich

Institute of Genetics and Cytology of the National Academy of Sciences of Belarus

Email: n.chakova@igc.by
Republic Belarus, 220072, Minsk

S. S. Niyazova

Institute of Genetics and Cytology of the National Academy of Sciences of Belarus

Email: n.chakova@igc.by
Republic Belarus, 220072, Minsk

O. Ch. Mazur

Institute of Genetics and Cytology of the National Academy of Sciences of Belarus

Email: n.chakova@igc.by
Republic Belarus, 220072, Minsk

A. S. Ivanova

Institute of Genetics and Cytology of the National Academy of Sciences of Belarus

Email: n.chakova@igc.by
Republic Belarus, 220072, Minsk

A. D. Liaudanski

Institute of Genetics and Cytology of the National Academy of Sciences of Belarus

Email: n.chakova@igc.by
Republic Belarus, 220072, Minsk

References

  1. LeWinter M.M., Granzier H.L. Titin is a major human disease gene // Circulation. 2013. V. 127. № 8. P. 938–944. https://doi.org/10.1161/CIRCULATIONAHA.112.139717
  2. Granzier H.L., Irving T.C. Passive tension in cardiac muscle: Contribution of collagen, titin, microtubules, and intermediate filaments // Biophys. J. 1995. V. 68. № 3. P. 1027–1044. https://doi.org/10.1016/S0006-3495(95)80278-X
  3. Bang M.L., Centner T., Fornoff F. et al. The complete gene sequence of titin, expression of an unusual approximately 700-kDa titin isoform, and its interaction with obscurin identify a novel Z-line to I-band linking system // Circ Res. 2001. V. 89. № 11. P. 1065–1072. https://doi.org/10.1161/hh2301.100981
  4. Linke W.A. Sense and stretchability: The role of titin and titin-associated proteins in myocardial stress-sensing and mechanical dysfunction // Cardiovasc. Res. 2008. V. 77. № 4. P. 637–648. https://doi.org/10.1016/j.cardiores.2007.03.029
  5. Musa H., Meek S., Gautel M. et al. Targeted homozygous deletion of M-band titin in cardiomyocytes prevents sarcomere formation // J. Cell Science. 2006. V. 119. № 20. P. 4322–4331. https://doi.org/10.1242/jcs.03198
  6. Lahmers S., Wu Y., Call D.R. et al. Developmental control of titin isoform expression and passive stiffness in fetal and neonatal myocardium // Circ. Res. 2004. V. 94. № 4. P. 505–513. https://doi.org/10.1161/01.RES.0000115522.52554.86
  7. Greaser M.L., Krzesinski P.R., Warren C.M. et al. Developmental changes in rat cardiac titin/connectin: Transitions in normal animals and in mutants with a delayed pattern of isoform transition // J. Muscle Res. Cell. Motil. 2005. V. 26. № 6–8. P. 325–332. https://doi.org/10.1007/s10974-005-9039-0
  8. Cazorla O., Freiburg A., Helmes M. et al. Differential expression of cardiac titin isoforms and modulation of cellular stiffness // Circ. Res. 2000. V. 86. № 1. P. 59–67. https://doi.org/10.1161/01.res.86.1.59
  9. Neagoe C., Kulke M., del Monte F. et al. Titin isoform switch in ischemic human heart disease // Circulation. 2002. V. 106. № 11. P. 1333–1341. https://doi.org/10.1161/01.cir.0000029803.93022.93
  10. Nagueh S.F., Shah G., Wu Y. et al. Altered titin expression, myocardial stiffness, and left ventricular function in patients with dilated cardiomyopathy // Circulation. 2004. V. 110. № 2. P. 155–162. https://doi.org/10.1161/01.CIR.0000135591.37759.AF
  11. Roberts A.M., Ware J.S., Herman D.S. et al. Integrated allelic, transcriptional, and phenomic dissection of the cardiac effects of titin truncations in health and disease // Sci. Transl. Med. 2015. V. 7. P. 270–276. https://doi.org/0.1126/scitranslmed.3010134
  12. Herman D.S., Lam L., Taylor M.R. et al. Truncations of titin causing dilated cardiomyopathy // N. Engl. J. Med. 2012. V. 366. № 7. P. 619–628. https://doi.org/10.1056/NEJMoa1110186
  13. Golbus J.R., Puckelwartz M.J., Fahrenbach J.P. et al. Population-based variation in cardiomyopathy genes // Circ. Cardiovasc. Genet. 2012. V. 5. № 4. P. 391–399. https://doi.org/10.1161/CIRCGENETICS.112.962928
  14. Roncarati R., Viviani Anselmi C., Krawitz P. et al. Doubly heterozygous LMNA and TTN mutations revealed by exome sequencing in a severe form of dilated cardiomyopathy // Eur. J. Hum. Genet. 2013. V. 21. № 10. P. 1105–1111. https://doi.org/10.1038/ejhg.2013.16
  15. Jenni R., Oechslin E., Schneider J. et al. Echocardiographic and pathoanatomical characteristics of isolated left ventricular non-compaction: A step towards classification as a distinct cardiomyopathy // Heart (British Cardiac Society). 2001. V. 86. № 6. P. 666–671. https://doi.org/10.1136/heart.86.6.666
  16. Petersen S.E., Selvanayagam J.B., Wiesmann F. et al. // Left ventricular non-compaction: in sights from cardiovascular magnetic resonance imaging // J. Am. College Cardiology. 2005. V. 46. № 1. P. 101–105. https://doi.org/10.1016/j.jacc.2005.03.045
  17. Jacquier A., Thuny F., Jop B. et al. Measurement of trabeculated left ventricular mass using cardiac magnetic resonance imaging in the diagnosis of left ventricular non-compaction // Eur. Heart J. 2010. V. 31. № 9. P. 1098–1104. https://doi.org/10.1093/eurheartj/ehp595
  18. Wang K., Li M., Hakonarson H. ANNOVAR: Functional annotation of genetic variants from high-throughput sequencing data // Nucl. Acids. Res. 2010. V. 38. № 16. e164. https://doi.org/10.1093/nar/gkq603
  19. Richards S., Aziz N., Bale S. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology // Genet. Med. 2015. V. 17. P. 405–424. https://doi.org/10.1038/gim.2015.30
  20. Hazebroek M.R., Krapels I., Verdonschot J. et al. Prevalence of pathogenic gene mutations and prognosis do not differ in isolated left ventricular dysfunction compared with dilated cardiomyopathy // Circ. Heart Fail. 2018. V. 11. № 3. e004682. https://doi.org/10.1161/CIRCHEARTFAILURE.117.004682
  21. Savarese M., Sarparanta J., Vihola A. et al. Increasing role of titin mutations in neuromuscular disorders // J. Neuromuscular Diseases. 2016. V. 3. № 3. P. 293–308. https://doi.org/10.3233/JND-160158
  22. Oates E.C., Jones K.J., Donkervoort S. et al. Congenital titinopathy: Comprehensive characterization and pathogenic insights // Ann. Neurol. 2018. V. 83. № 6. P. 1105–1124. https://doi.org/10.1002/ana.25241
  23. Hinson J.T., Chopra A., Nafissi N. et al. HEART DISEASE. Titin mutations in iPS cells define sarcomere insufficiency as a cause of dilated cardiomyopathy // Science. 2015. V. 349. № 6251. P. 982–986. https://doi.org/10.1126/science.aaa5458
  24. Savarese M., Maggi L., Vihola A. Interpreting genetic variants in titin in patients with muscle disorders // JAMA Neurol. 2018. V. 75. № 5. P. 557–565. https://doi.org/10.1001/jamaneurol.2017.4899
  25. Miszalski-Jamka K., Jefferies J.L., Mazur W. et al. Novel genetic triggers and genotype–phenotype correlations in patients with left ventricular noncompaction // Circ. Cardiovasc. Genet. 2017. V. 10. № 4. e001763. https://doi.org/10.1161/CIRCGENETICS.117.001763
  26. Savarese M., Johari M., Johnson K. et al. Improved criteria for the classification of titin variants in inherited skeletal myopathies // J. Neuromuscul. Dis. 2020. V. 7. № 2. P. 153–166. https://doi.org/10.3233/JND-190423
  27. Akinrinade O., Koskenvuo J.W., Alastalo T.P. Prevalence of titin truncating variants in general population // PLoS One. 2015. V. 10. № 12. e0145284. https://doi.org/10.1371/journal.pone.0145284
  28. Begay R.L., Graw S., Sinagra G. et al. Familial cardiomyopathy registry. role of titin missense variants in dilated cardiomyopathy // J. Am. Heart Assoc. 2015. V. 4. № 11. e002645. https://doi.org/10.1161/JAHA.115.002645

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (130KB)
3.

Download (104KB)
4.

Download (530KB)

Copyright (c) 2023 Н.Н. Чакова, Р.С. Шулинский, С.М. Комиссарова, Т.В. Долматович, С.С. Ниязова, О.Ч. Мазур, А.С. Иванова, О.Д. Левданский

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies