Mitochondrial DNA Mutations in Cardiovascular Diseases

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Early prevention of development and timely diagnosis of diseases of the cardiovascular system are some of the main tasks of modern cardiology. One of the promising approaches is aimed at identifying associations between the carriage of mitochondrial DNA (mtDNA) mutations and the development of cardiovascular diseases. Mitochondria are the only source of energy accumulation in cardiomyocytes; therefore, failure of their functioning, caused by mtDNA mutations, directly affects the bioenergetics and the work of myocardial cells. The purpose of this review is to describe the current achivements in the study of associations of mutant mtDNA with the development of various pathologies of the cardiovascular system.

About the authors

V. A. Korepanov

Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Science

Author for correspondence.
Email: vakorep41811@gmail.com
Russia, 634012, Tomsk

T. Yu. Rebrova

Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Science

Email: vakorep41811@gmail.com
Russia, 634012, Tomsk

R. E. Batalov

Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Science

Email: vakorep41811@gmail.com
Russia, 634012, Tomsk

S. A. Afanasiev

Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Science

Email: vakorep41811@gmail.com
Russia, 634012, Tomsk

References

  1. Townsend N., Kazakiewicz D., Lucy Wright F. et al. Epidemiology of cardiovascular disease in Europe // Nat. Rev. Cardiol. 2022. № 19. P. 133–143. https://doi.org/10.1038/s41569-021-00607-3
  2. Hinton W., McGovern A., Coyle R. et al. Incidence and prevalence of cardiovascular disease in English primary care: A cross-sectional and follow-up study of the Royal College of General Practitioners (RCGP) Research and Surveillance Centre (RSC) // BMJ Open. 2018. № 8. e020282. https://doi.org/10.1136/bmjopen-2017-020282
  3. Бойцов С.А., Драпкина О.М., Шляхто Е.В. и др. Исследование ЭССЕ-РФ (Эпидемиология сердечно-сосудистых заболеваний и их факторов риска в регионах Российской Федерации). Десять лет спустя // Кардиоваскулярная терапия и профилактика. 2021. Т. 20. № 5. С. 3007.
  4. Hanft L.M., Emter C.A., McDonald K.S. Cardiac myofibrillar contractile properties during the progression from hypertension to decompensated heart failure // Am. J. Physiol. Heart. Circ. Physiol. 2017. V. 313. № 1. P. H103–H113. https://doi.org/10.1152/ajpheart.00069.2017
  5. Cao Y.P., Zheng M. Mitochondrial dynamics and inter-mitochondrial communication in the heart // Arch. Biochem. Biophys. 2019. V. 663. P. 214–219. https://doi.org/10.1016/j.abb.2019.01.017
  6. Иванов К.П. Современные медицинские проблемы энергообмена у человека // Вестник РАМН. 2013. № 6. С. 56–59.
  7. Alston C.L., Rocha M.C., Lax N.Z. et al. The genetics and pathology of mitochondrial disease // J. Pathol. 2017. V. 241. № 2. P. 236–250. https://doi.org/10.1002/path.4809
  8. Luft R., Ikkos D., Palmieri G. et al. A case of severe hypermetabolism of nonthyroid origin with a defect in the maintenance of mitochondrial respiratory control: A correlated clinical, biochemical, and morphological study // J. Clin. Invest. 1962. V. 41. № 9. P. 1776–804. https://doi.org/10.1172/JCI104637
  9. Nass M.M., Nass S. Intramitochondrial fibers with DNA characteristics. I. Fixation and electron staining reactions // J. Cell. Biol. 1963. V. 19. № 3. P. 593–611. https://doi.org/10.1083/jcb.19.3.593
  10. Wallace D.C., Singh G., Lott M.T. et al. Mitochondrial DNA mutation associated with Leber’s hereditary optic neuropathy // Science. 1988. V. 242. № 4884. P. 1427–1430. https://doi.org/10.1126/science.3201231
  11. Понасенко А.В., Цепокина А.В., Тхоренко Б.А. и др. Изменчивость митохондриальной ДНК в развитии атеросклероза и инфаркта миокарда (обзор литературы) // Комплексные проблемы сердечно-сосудистых заболеваний. 2018. Т. 7. № 4S. С. 75–85.
  12. Mancuso M., Orsucci D., Angelini C. et al. The m.3243A>G mitochondrial DNA mutation and related phenotypes. A matter of gender? // J. Neurol. 2014. V. 261. № 3. P. 504–510. https://doi.org/10.1007/s00415-013-7225-3
  13. Ng Y.S., Grady J.P., Lax N.Z. et al. Sudden adult death syndrome in m.3243A>G-related mitochondrial disease: An unrecognized clinical entity in young, asymptomatic adults // Eur. Heart. J. 2016. V. 37. № 32. P. 2552–2559. https://doi.org/10.1093/eurheartj/ehv306
  14. Sazonova M.A., Sinyov V.V., Ryzhkova A.I. et al. MtDNA mutations linked with left ventricular hypertrophy // Vessel Plus. 2019. № 3. P. 5. https://doi.org/10.20517/2574-1209.2018.56
  15. Qi Y., Wu Z., Bai Y. et al. Screening for mitochondrial tRNA mutations in 318 patients with dilated cardiomyopathy // Hum. Hered. 2022. V. 87. P. 1–11. https://doi.org/10.1159/000521615
  16. Brambilla A., Olivotto I., Favilli S. et al. Impact of cardiovascular involvement on the clinical course of paediatric mitochondrial disorders // Orphanet J. Rare Dis. 2020. V. 15. № 1. P. 196. https://doi.org/10.1186/s13023-020-01466-w
  17. Гетман С.И. Распространенность нарушений ритма сердца и проводимости среди обратившихся за медицинской помощью к кардиологу на амбулаторном этапе // Кардиология. 2018. Т. 58. № 6. С. 20–28.
  18. Deo R., Albert C.M. Epidemiology and genetics of sudden cardiac death // Circulation. 2012. V. 125. P. 620–637. https://doi.org/0.1161/CIRCULATIONAHA.111.023838
  19. Kytövuori L., Junttila J., Huikuri H. et al. Mitochondrial DNA variation in sudden cardiac death: A population-based study // Int. J. Legal. Med. 2020. V. 134. № 1. P. 39–44. https://doi.org/10.1007/s00414-019-02091-4
  20. Khatami F., Mehdi Heidari M., Houshmand M. The mitochondrial DNA mutations associated with cardiac arrhythmia investigated in an LQTS family // Iran J. Basic. Med. Sci. 2014. V. 17. № 9. P. 656–661.
  21. Niedermayr K., Pölzl G., Scholl-Bürgi S. et al. Mitochondrial DNA mutation “m.3243A>G”. Heterogeneous clinical picture for cardiologists (“m.3243A>G”: A phenotypic chameleon) // Congenit. Heart. Dis. 2018. V. 13. № 5. P. 671–677. https://doi.org/10.1111/chd.12634
  22. Li X., Liu M., Sun R. et al. Atherosclerotic coronary artery disease: The accuracy of measures to diagnose preclinical atherosclerosis // Exp. Theor. Med. 2016. V. 12. № 5. P. 2899–2902. https://doi.org/10.3892/etm.2016.3710
  23. Nishigaki Y., Yamada Y., Fuku N. et al. Mitochondrial haplogroup A is a genetic risk factor for atherothrombotic cerebral infarction in Japanese females // Mitochondrion. 2007. V. 7. № 1–2. P. 72–79. https://doi.org/10.1016/j.mito.2006.11.002
  24. Nishigaki Y., Yamada Y., Fuku N. et al. Mitochondrial haplogroup N9b is protective against myocardial infarction in Japanese males // Hum. Genet. 2007. V. 120. № 6. P. 827–836. https://doi.org/10.1007/s00439-006-0269-z
  25. Sazonova M.A., Sinyov V.V., Ryzhkova A.I. et al. Role of mitochondrial genome mutations in pathogenesis of carotid atherosclerosis // Oxid. Med. Cell Longev. 2017. V. 2017. P. 6934394. https://doi.org/10.1155/2017/6934394
  26. Liu C., Yang Q., Hwang S.J. et al. Association of genetic variation in the mitochondrial genome with blood pressure and metabolic traits // Hypertension. 2012. V. 60. № 4. P. 949–956. https://doi.org/10.1161/Hypertensionaha.112.196519
  27. Jia Z., Zhang Y., Li Q. et al. A coronary artery disease-associated tRNAThr mutation altered mitochondrial function, apoptosis and angiogenesis // Nucl. Ac. Res. 2019. V. 47. № 4. P. 2056–2074. https://doi.org/10.1093/nar/gky1241
  28. Zhu Q., Chen C., Yao J. Kearns–Sayre syndrome with a novel large-scale deletion: A case report // BMC Ophthalmol. 2022. V. 22. № 1. P. 35. https://doi.org/10.1186/s12886-021-02224-7
  29. Khambatta S., Nguyen D.L., Beckman T.J., Wittich C.M. Kearns–Sayre syndrome: A case series of 35 adults and children // Int. J. Gen. Med. 2014. № 7. P. 325–332. https://doi.org/10.2147/IJGM.S65560
  30. Mancuso M., Orsucci D., Filosto M. et al. Drugs and mitochondrial diseases: 40 queries and answers // Expert. Opin. Pharmacother. 2012. V. 13. № 4. P. 527–543.
  31. Komura K., Nakano K., Ishigaki K. et al. Creatine monohydrate therapy in a Leigh syndrome patient with A8344G mutation // Pediatr. Int. 2006. V. 48. № 4. P. 409–412.
  32. Kaur S., Nagpal M. Recent advancement in human reproduction three-parent babies: A technique to neutralize mitochondrial disease load-A boon or a bane for society? // Curry Trends Diagn. Treat. 2017. V. 1. № 2. P. 100–103.
  33. Labarta E., de Los Santos M.J., Escribá M.J. et al. Mitochondria as a tool for oocyte rejuvenation // Fertil. Steril. 2019. V. 111. № 2. P. 219–226.
  34. Neupane J., Vandewoestyne M., Ghimire S. et al. Assessment of nuclear transfer techniques to prevent the transmission of heritable mitochondrial disorders without compromising embryonic development competence in mice // Mitochondrion. 2014. V. 18. P. 27–33.
  35. Wolf D.P., Mitalipov N., Mitalipov S. Mitochondrial replacement therapy in reproductive medicine // Trends Mol. Med. 2015. V. 21. № 2. P. 68–76. https://doi.org/10.1016/j.molmed.2014.12.001
  36. Hyslop L.A., Blakeley P., Craven L. et al. Towards clinical application of pronuclear transfer to prevent mitochondrial DNA disease // Nature. 2016. V. 534. P. 383–386.
  37. Zaidi A.A., Makova K.D. lnvestigating mitonuclear interactions in human admixed populations // Nat. Ecol. Evol. 2019. № 3. P. 213–222. https://doi.org/0.1038/s41559-018-0766-1

Copyright (c) 2023 В.А. Корепанов, Т.Ю. Реброва, Р.Е. Баталов, С.А. Афанасьев

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies