Mathematical Model Development for Schizophrenia Risk Prediction Based on Assessment of Polymorphic Alleles Carriage in 13 Genetic Loci Affecting Pterin Metabolism

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Real-time PCR was used to analyze the carriage of alleles in 13 genetic loci that affect pterin metabolism in 116 patients with schizophrenia and 62 healthy volunteers. To analyze the accuracy of predicting the risk of schizophrenia, we used the binary logistic regression method with the assessment of the contribution of all studied loci. Results: A mathematical model was developed that makes it possible to predict the risk of schizophrenia manifestation in a carrier of the combination of genotypes MTHFD1 1958CC/MTRR 66GG with a probability of 90.6%, MTHFD1 1958CC/MTRR66AG with a probability of 81.9%. The use of this model is expedient in routine psychiatric practice among individuals at high risk of schizophrenia manifestation after replication in other samples and obtaining a larger volume of observations.

About the authors

T. V. Zhilyaeva

Privolzhsky Research Medical University; Bekhterev National Research Medical Center Psychiatry and Neurology

Author for correspondence.
Email: bizet@inbox.ru
Russia, 603005, Nizhny Novgorod; Russia, 192019, , St. Petersburg

A. P. Bavrina

Privolzhsky Research Medical University

Email: bizet@inbox.ru
Russia, 603005, Nizhny Novgorod

E. D. Kasyanov

Bekhterev National Research Medical Center Psychiatry and Neurology

Email: bizet@inbox.ru
Russia, 192019, , St. Petersburg

A. S. Blagonravova

Privolzhsky Research Medical University

Email: bizet@inbox.ru
Russia, 603005, Nizhny Novgorod

G. E. Mazo

Bekhterev National Research Medical Center Psychiatry and Neurology

Email: bizet@inbox.ru
Russia, 192019, , St. Petersburg

References

  1. Wang D., Zhai J.X., Liu D.W. Serum folate levels in schizophrenia: a meta-analysis // Psych. Res. 2016. V. 235. P. 83–89. https://doi.org/10.1016/j.psychres.2015.11.045
  2. Ayesa-Arriola R., Pérez-Iglesias R., Rodríguez-Sánchez J.M. et al. Homocysteine and cognition in first-episode psychosis patients // Eur. Arch. Psych. Clin. Neurosci. 2012. V. 262. № 7. P. 557–564. https://doi.org/10.1007/s00406-012-0302-2
  3. Numata S., Kinoshita M., Tajima A. et al. Evaluation of an association between plasma total homocysteine and schizophrenia by a Mendelian randomization analysis // BMC Med. Genet. 2015. V. 16. № 1. P. 54. https://doi.org/10.1186/s12881-015-0197-7
  4. Nishi A., Numata S., Tajima A. et al. Meta-analyses of blood homocysteine levels for gender and genetic association studies of the MTHFR C677T polymorphism in schizophrenia // Schizophrenia Bull. 2014. V. 40. № 5. P. 1154–1163. https://doi.org/10.1093/schbul/sbt154
  5. Zhang Y., Hodgson N.W., Trivedi M.S. et al. Decreased brain levels of vitamin B12 in aging, autism and schizophrenia // PLoS One. 2016. V. 11. № 1. P. E0146797. https://doi.org/10.1371/journal.pone.0146797
  6. Klaus F., Guetter K., Schlegel R. et al. Peripheral biopterin and neopterin in schizophrenia and depression // Psych. Res. 2021. V. 297. P. 113745. https://doi.org/10.1016/j.psychres.2021.113745
  7. Yadav U., Kumar P., Gupta S., Rai V. Role of MTHFR C677T gene polymorphism in the susceptibility of schizophrenia: An updated meta-analysis // As. J. Psych. 2016. V. 20. P. 41–51. https://doi.org/10.1016/j.ajp.2016.02.002
  8. Kempisty B., Sikora J., Lianeri M. et al. MTHFD 1958G>A and MTR 2756A>G polymorphisms are associated with bipolar disorder and schizophrenia // Psych. Genet. 2007. V. 17. № 3. P. 177–181. https://doi.org/10.1097/YPG.0b013e328029826f
  9. Lajin B., Alhaj Sakur A., Michati R., Alachkar A. Association between MTHFR C677T and A1298C, and MTRR A66G polymorphisms and susceptibility to schizophrenia in a Syrian study cohort // As. J. Psych. 2012. V. 5. № 2. P. 144–149. https://doi.org/10.1016/j.ajp.2012.03.002
  10. Clelland J.D., Read L.L., Smeed J., Clelland C.L. Regulation of cortical and peripheral GCH1 expression and biopterin levels in schizophrenia-spectrum disorders // Psych. Res. 2018. V. 262. P. 229–236.https://doi.org/10.1016/j.Psychres.2018.02.020
  11. Жиляева Т.В., Сергеева А.В., Благонравова А.С. и др. Нарушения одноуглеродного метаболизма при шизофрении: генетические и терапевтические аспекты // Нейрохимия. 2019. Т. 36. № 2. С. 91–100. https://doi.org/10.1134/S1027813319020158
  12. Yang B., Liu Y., Li Y. et al. Geographical distribution of MTHFR C677T, A1298C and MTRR A66G gene polymorphisms in China: Findings from 15357 adults of Han nationality // PLoS One. 2013. V. 8. № 3. P. E57917. https://doi.org/10.1371/journal.pone.0057917
  13. Binia A., Contreras A.V., Canizales-Quinteros S. et al. Geographical and ethnic distribution of single nucleotide polymorphisms within genes of the folate/homocysteine pathway metabolism // Genes & Nutr. 2014. V. 9. № 5. P. 421. https://doi.org/10.1007/s12263-014-0421-7
  14. Yao X., Glessner J.T., Li J. et al. Integrative analysis of genome-wide association studies identifies novel loci associated with neuropsychiatric disorders // Transl. Psych. 2021. V. 11. № 1. P. 69. https://doi.org/10.1038/s41398-020-01195-5
  15. Moruzzi S., Guarini P., Udali S. et al. One-carbon genetic variants and the role of MTHFD1 1958G>A in liver and colon cancer risk according to global DNA methylation // PLoS One. 2017. V. 12. № 10. P. e0185792. https://doi.org/10.1371/journal.pone.0185792
  16. Zhilyaeva T.V., Chekanina O.M., Blagonravova A.S. et al. Methylenetetrahydrofolate dehydrogenase-1 (MTHFD1) 1958G>A genetic polymorphism (rs2236225) is associated with lower schizophrenia risk: Preliminary study // Gene Rep. 2022. V. 27. P. 101625. https://doi.org/10.1016/j.genrep.2022.101625
  17. Roffman J.L., Brohawn D.G., Nitenson A.Z. et al. Genetic variation throughout the folate metabolic pathway influences negative symptom severity in schizophrenia // Schiz. Bull. 2011. V. 39. № 2. P. 330–338. https://doi.org/10.1093/schbul/sbr150
  18. Wan L., Li Y., Zhang Z. et al. Methylenetetrahydrofolate reductase and psychiatric diseases // Transl. Psych. 2018. V. 8. № 1. P. 242. https://doi.org/10.1038/s41398-018-0276-6
  19. Roffman J.L., Lamberti J.S., Achtyes E. et al. Randomized multicenter investigation of folate plus vitamin B12 supplementation in schizophrenia // Jama Psych. 2013. V. 70. № 5. P. 481. https://doi.org/10.1001/jamapsychiatry.2013.900
  20. Жиляева Т.В., Благонравова А.С., Мазо Г.Э. Влияние разных форм фолатов на когнитивные функции у больных хронической шизофренией // Журн. неврол. и психиатрии им. C.C. Корсакова. 2020. Т. 120. № 9. С. 87–92. https://doi.org/10.17116/jnevro202012009187
  21. Htun N.C., Miyaki K., Zhao C. et al. Epistasis effects of COMT and MTHFR on inter-individual differences in mental health: Under the inverted U-shaped prefrontal dopamine model // Biochem. Biophys. Res. Commun. 2014. V. 451. № 4. P. 574–579. https://doi.org/10.1016/j.bbrc.2014.08.023
  22. Галинская Т.В., Щепетов Д.М., Лысенков С.Н. Предубеждения о микросателлитных исследованиях и как им противостоять // Генетика. 2019. Т. 55. № 6. С. 617–632. https://doi.org/10.1134/S0016675819060043

Copyright (c) 2023 Т.В. Жиляева, А.П. Баврина, Е.Д. Касьянов, А.С. Благонравова, Г.Э. Мазо

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies