Informative Relevance of 11 Microsatellite Loci for Forensic DNA-Identification of Wild and Farm American Minc (Mustela vison) in Belarus

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

American mink is involved in economic activity of the Republic of Belarus since it belongs to resource hunting species as well as breeds for fur production. We propose identification test system consisting of 11 microsatellite DNA loci designed for forensic investigation of cases of illegal hunting and animals stealing for precious furs. Informative relevance of the test system studied using two samples of farm minks and a sample from a wild population of M. vision geographically isolated from fur farms. The significant genetic differences between wild and farmed minks (Fst = 0.04397, P < 0.05) showed with random match probabilities of 11-locus genotypes calculated with and without taking into account the Fst value differing by two orders (1.84 × 10–8 and 1.39 × 10–10 respectively). As concerned to forensic DNA analysis, the reference databases should be formed for wild and farm animals separately.

About the authors

V. M. Lukashkova

Scientific and Practical Center of the of the State Committee of Forensic Examinations
of the Republic of Belarus

Author for correspondence.
Email: l22805@tut.by
Republic of Belarus, 220114, Minsk

A. A. Spivak

Scientific and Practical Center of the of the State Committee of Forensic Examinations
of the Republic of Belarus

Email: l22805@tut.by
Republic of Belarus, 220114, Minsk

S. A. Kotova

Scientific and Practical Center of the of the State Committee of Forensic Examinations
of the Republic of Belarus

Email: l22805@tut.by
Republic of Belarus, 220114, Minsk

References

  1. Сидорович В.Е., Ставровский Д.Д. Норка американская // Звери: популярный энциклопедический справочник (животный мир Беларуси). Минск, 2003. С. 217–222.
  2. Министерство лесного хозяйства Республики Беларусь. Отчет о ведении охотничьего хозяйства за 2021 год. Минск, 2022. 6 с.
  3. Valnisty A.A., Homel K.V., Kheidorova E.E. et al. Molecular genetic polymorphism of American mink populations (Neovison vison) in model fur farms and on the adjacent territories in Belarus // Dokl. Natl Acad. Sci. Belarus. 2020. V. 64. № 6. P. 685–693. https://doi.org/10.29235/1561-8323-2020-64-6-685-693
  4. The Evaluation of Forensic DNA Evidence. Committee on DNA Forensic Science: an update. Washington (D.C.): Natl Acad. Press, 1996. 272 p.https://doi.org/10.17226/5141
  5. Fleming M.A., Ostrander E.A., Cook J.A. Microsatellite markers for American mink (Mustela vison) and ermine (Mustela erminea) // Mol. Ecol. 1999. V. 8. P. 1351–1362. https://doi.org/10.1046/j.1365-294x.1999.00701_2.x
  6. Vincent I.R., Farid A., Otieno C.J. Variability of thirteen microsatellite markers in American mink // Can. J. Anim. Sci. 2003. V. 83. P. 597–599. https://doi.org/10.4141/A03-001
  7. Dallas J.F., Piertney S.B. Microsatellite primers for the Eurasian otter // Mol. Ecol. 1998. V. 7. P. 1248–1250.
  8. Annavi G., Dawson D.A., Horsburgh G.J. et al. Characterization of twenty-one European badger (Meles meles) microsatellite loci facilitates the discrimination of second-order relatives // Conservation Genet. Resour. 2011. V. 3. P. 515–518. https://doi.org/10.1007/s12686-011-9392-9
  9. Rodrigues M., Santos-Reis M., Elmeros M. et al. Markers for genetic studies in the weasel (Mustela nivalis) // Eur. J. Wildl. Res. 2012. V. 58. P. 507–510. https://doi.org/10.1007/s10344-011-0583-1
  10. GeneAlEx 6.5: Genetic Analysis in Excel [Электронный ресурс]. URL: https://biology-assets.anu.edu.au/GenAlEx/Welcome.html (дата обращения 20.04.2022).
  11. Arlequin: An Integrated Software for Population Genetics Data Analysis [Электронный ресурс]. URL: http://cmpg.unibe.ch/software/arlequin3 (дата обращения 02.05.2022).
  12. Peakall R., Smouse P.E. GENEALEX 6: genetic analysis in Excel. Population genetic software for teaching and research // Mol. Ecol. 2006. V. 6. P. 288–295. https://doi.org/10.1093/bioinformatics/bts460
  13. Hutchinson W.F.D., Wills D., Shipley P. MICRO-CHECKER: Software for identifying and correcting genotyping errors in microsatellite data // Mol. Ecol. Notes. 2004. V. 4. № 3. P. 535–538. https://doi.org/10.1111/j.1471-8286.2004.00684.x
  14. Rice W.R. Analyzing tables of statistical tests // Evolution. 1989. V. 43. P. 223–225. https://doi.org/10.1111/j.1558-5646.1989.tb04220.x
  15. Kelly A.C., Mateus-Pinilla N.E., Douglas M. et al. Microsatellites behaving badly: empirical evaluation of genotyping errors and subsequent impacts on population studies // Genet. Mol. Research. 2011. V. 10. № 4. P. 2534–2553. https://doi.org/10.4238/2011.October.19.1
  16. Miller W.L., Edson J., Pietranrea P et al. Identification and evaluation of core microsatellite panel for use in white-tailed deer (Odocoileus virginianus) // BMC Genetics. 2019. V. 20. № 49. P. 1–14.
  17. Michalska-Parda A., Brzeziñski M., Zalewski A. et al. Genetic variability of feral and ranch American mink Neovison vison in Poland // Acta Theriologica. 2009. V. 54. P. 1–10. https://doi.org/10.1007/BF03193132
  18. Morris K.Y., Bowman J., Schulte-Hostedde A. et al. Functional genetic diversity of domestic and wild American mink (Neovison vison) // Evol. Appl. 2020. V. 13. P. 2610–2629. https://doi.org/10.1111/eva.13061
  19. Morf N.V., Kopps A.M., Nater A. et al. STRoe deer: A validated forensic STR profiling system for the European roe deer (Capreolus capreolus) // Forensic Sci. Intern.: Animals and Environments. 2021. V. 1. P. 1–10. https://doi.org/10.1016/j.fsiae.2021.100023
  20. Jobin R.M., Patterson D., Zhang Y. DNA typing in populations of mule deer for forensic use in the Province of Alberta // Forensic Sci. Intern.: Genetics. 2008. V. 2. P. 190–197. https://doi.org/10.1016/j.fsigen.2008.01.003
  21. Hamlin B.C., Erin P., Meredith E.P. et al. OdoPlex: An STR multiplex panel optimized and validated for forensic identification and sex determination of North American mule deer (Odocoileus hemionus) and white-tailed deer (Odocoileus virginianus) // Forensic Sci. Intern.: Animals and Environments. 2021. V. 1. P. 11–21. https://doi.org/10.1016/j.fsiae.2021.100026
  22. Szabolcsi Z., Egyed B., Zenke P. et al. Constructing STR multiplexes for individual identification of Hungarian red deer // J. Forensic Sci. 2014. V. 59. № 4. P. 1090–1099. https://doi.org/10.1111/1556-4029.12403
  23. Rębała K., Nedzvetskaya D.E., Kotova S.A. Forensic STR typing of European elk (moose) and European roe deer reveals contrasting patterns of genetic structure of the two cervids in Belarus // Russ. J. Genet. 2022. in press.
  24. Rębala K., Rabtsava A.A., Kotova S.A. et al. STR profiling for discrimination between wild and domestic swine specimens and between main breeds of domestic pigs reared in Belarus // PLoS One. 2016. V. 11. № 11. P. 1–14. https://doi.org/10.1371/journal.pone.0166563
  25. SWGDAM, Scientific Working Group on DNA Analysis Methods, Recommendations of the SWGDAM Ad Hoc Working Group on Genotyping Results Reported as Likelihood Ratios, SWGDAM, 2018. P. 1–6. https://doi.org/1ecb9588-ea6f-4feb
  26. Ogden R., Linacre A. Wildlife forensic science: A review of genetic geographic origin assignment // Forensic Sci. Intern. Genet. 2015. V. 18. P. 152–159. https://doi.org/10.1016/j.fsigen.2015.02.008

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (108KB)
3.

Download (168KB)

Copyright (c) 2023 О.Н. Лукашкова, Е.А. Спивак, С.А. Котова

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies