Association of Allelic Variants A and B of the Beta-Lactoglobulin Gene with Dairy Productivity of Cattle

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The effectiveness of cattle selection for quantitative and qualitative traits that are of economic importance in dairy cattle breeding largely depends on the identification of the genes that control these traits, as well as their allelic polymorphism. One such gene is the gene LGB encoding the protein beta-lactoglobulin. The review provides brief information about the structure and biological role of this protein, gene polymorphism. An analysis of the literature data of various studies was carried out, which made it possible to identify and evaluate the effect of the two most common alleles of the gene LGB (A and B) on the efficiency indicators of dairy production.

About the authors

E. V. Parygina

Laverov Federal Research Center for Comprehensive Study of the Arctic,
Ural Branch of the Russian Academy of Sciences; Lomonosov Northern (Arctic) Federal University

Author for correspondence.
Email: pariginakatya@yandex.ru
Russia, 163069, Arkhangelsk; Russia, 163002, Arkhangelsk

I. S. Kozhevnikova

Laverov Federal Research Center for Comprehensive Study of the Arctic,
Ural Branch of the Russian Academy of Sciences; Lomonosov Northern (Arctic) Federal University

Email: pariginakatya@yandex.ru
Russia, 163069, Arkhangelsk; Russia, 163002, Arkhangelsk

References

  1. Рачкова Е.Н. Наследуемость молочной продуктивности в зависимости от полиморфизма гена бета-лактоглобулина // Уч. зап. Казанской гос. академии ветеринарной медицины им. Н.Э. Баумана. 2016. Т. 226. № 2. С. 209–213.
  2. Милостивый Р.В., Карлова Л.В., Санжара Р.А. Качественный состав молока голштинских коров в зависимости от паратипических и генетических факторов // Наук. вісник львівського нац. уніву. ветеринарної медицини та біотехнологій імені с.з. ґжицького. 2017. Т. 19. № 82. С. 125–131. https://doi.org/10.15421/nvlvet8226
  3. Zinnatov F.F., Zinnatova F.F., Volkov A.H. et al. Studying the association of polymorphic variants of LEP, TG5, CSN3, LGB genes with signs of dairy productivity of cattle // Intern. J. Res. Pharmaceutical Sci. 2020. V. 11. № 2. P. 1428–1432. https://doi.org/10.26452/ijrps.v11i2.2013
  4. Kolenda M., Sitkowska B., Kamola D., Lambert B.D. Composite genotypes of progestogen-associated endometrial protein gene and their association with composition and quality of dairy cattle milk // Animal Biosci. 2021. V. 34. № 8. P. 1283–1289. https://doi.org/10.5713/ab.20.0596
  5. Bielecka M., Cichosz G., Czeczot H. Antioxidant, antimicrobial and anticarcinogenic activities of bovine milk proteins and their hydrolysates – A review // Intern. Dairy J. 2022. V. 127. Р. 1–13. https://doi.org/10.1016/j.idairyj.2021.105208
  6. Ельчанинов В.В. Номенклатура и биохимические свойства основных сывороточных белков. Бета-лактоглобулин // Сыроделие и маслоделие. 2009. № 2. С. 38–39.
  7. Kazimierska K., Kalinowska-Lis U. Milk proteins-their biological activities and use in cosmetics and dermatology // Molecules. 2021. V. 26. № 3253. P. 1–22. https://doi.org/10.3390/molecules26113253
  8. Bologa M., Vrabie E., Paladii I. et al. Peculiarities of extraction of β-lactoglobuline in protein mineral concentrates at electroactivation of whey // One Health & Risk Management. 2021. V. 1. № 1. P. 52–68. https://doi.org/10.38045/ohrm.2021.1.06
  9. Сафина Н.Ю., Гайнутдинова Э.Р., Зиннатова Ф.Ф. и др. Влияние комплексных генотипов генов каппа-казеин (CSN3) и бета-лактоглобулин (LGB) на молочную продуктивность голштинского скота // Аграрный науч. журн. 2020. № 5. С. 64–67. https://doi.org/10.28983/asj.y2020i5pp64-67
  10. Złotkowska D., Stachurska E., Fuc E. et al. Differences in regulatory mechanisms induced by β-lactoglobulin and κ-casein in cow’s milk allergy mouse model–in vivo and ex vivo studies // Nutrients. 2021. V. 13. № 349. P. 1–16. https://doi.org/10.3390/nu13020349
  11. McSweeney P.L.H., Fox P.F. Advanced Dairy Chemistry. Volume 1A: Proteins: Basic Aspects, 4th ed. Boston: Springer, 2013. 548 p. https://doi.org/10.1007/978-1-4614-4714-6
  12. Bosman G.P., Oliveira S., Simons P.J. et al. Limited lactosylation of beta-lactoglobulin from cow’s milk exerts strong influence on antigenicity and degranulation of mast cells // Nutrients. 2021. V. 13. № 2041. P. 1–13. https://doi.org/10.3390/nu13062041
  13. Bogahawaththa D., Chandrapala J., Vasiljevic T. Thermal denaturation of bovine β-lactoglobulin in different protein mixtures in relation to antigenicity // Intern. Dairy J. 2019. V. 91. P. 89–97. https://doi.org/10.1016/j.idairyj.2018.10.004
  14. Chessa S., Nicolazzi E.L., Nicoloso L. et al. Analysis of candidate SNPs affecting milk and functional traits in the dual-purpose Italian Simmental cattle // Livestock Sci. 2015. V. 173. P. 1–8. https://doi.org/10.1016/j.livsci.2014.12.015
  15. Bohlouli M., Halli K., Yin T. et al. Genome-wide associations for heat stress response suggest potential candidate genes underlying milk fatty acid composition in dairy cattle // J. Dairy Sci. 2022. V. 105. № 4. https://doi.org/10.3168/jds.2021-21152
  16. Погорельский И.А., Позовникова М.В. Полиморфизм гена бета-лактоглобулина (BLG) в стаде крупного рогатого скота черно-пестрой породы и взаимосвязь его генотипов с показателями молочной продуктивности // Генетика и разведение животных. 2014. № 1. С. 45–47.
  17. Долматова И.Ю., Валитов Ф.Р. Оценка генетического потенциала крупного рогатого скота по маркерным генам // Вестник Башкирского ун-та. 2015. Т. 20. № 3. С. 850–853.
  18. Caroli A.M., Chessa S., Erhardt G.J. Invited review: Milk protein polymorphisms in cattle: Effect on animal breeding and human nutrition // J. Dairy Sci. 2009. V. 92. № 11. P. 5335–5352. https://doi.org/10.3168/jds.2009-2461
  19. Трубицина Т.П., Рябых В.П., Колоскова Е.М. и др. Использование гена бета-лактоглобулина при получении рекомбинантных белков − от старых технологий трансгенеза к новым методам редактирования генома (обзор) // Проблемы биологии продуктивных животных. 2018. № 3. С. 15–34. https://doi.org/10.25687/1996-6733.prodanimbiol.2018. 3.15-34
  20. Ахметов Т.М., Тюлькин С.В., Зарипов О.Г. Полиморфизм гена бета-лактоглобулина в стадах крупного рогатого скота // Уч. зап. Казанской гос. акад. ветеринарной медицины им. Н.Э. Баумана. 2010. Т. 202. С. 36–41.
  21. Soyudal B., Ardicli S., Samli H. et al. Association of polymorphisms in the CSN2, CSN3, LGB and LALBA genes with milk production traits in Holstein cows raised in Turkey // J. Hellenic Veterinary Med. Soc. 2018. V. 69. № 8. P. 1271–1282. https://doi.org/10.12681/jhvms.19617
  22. Barbosa S.B.P., de Araújo Í.I.M., Martins M.F. et al. Genetic association of variations in the kappa-casein and β-lactoglobulin genes with milk traits in girolando cattle // Revista Brasileira de Saude e Producao Animal. 2019. V. 20. № e0312019. P. 1–12. https://doi.org/10.1590/S1519-9940200312019
  23. Nikšić D., Pantelić V., Ostojić Andrić D. et al. The influence of genetic β-lactoglobulin polymorphism on the quantity and quality of milk of the simmental breed in Serbia // Genetika. 2021. V. 53. № 1. P. 263–270. https://doi.org/10.2298/GENSR2101263N
  24. AgReg-SNPdb: A database of regulatory SNPs for agricultural species. Режим доступа: https://azifi.tz.agrar.uni-goettingen.de/agreg-snpdb/snps.php?page=welcome
  25. Sanchez M.P., Fritz S., Patry C. et al. Frequencies of milk protein variants and haplotypes estimated from genotypes of more than 1 million bulls and cows of 12 French cattle breeds // J. Dairy Sci. 2020. V. 103. № 10. P. 9124–9141. https://doi.org/10.3168/jds.2020-18492
  26. Asmaa W.Z., Ashraf A., Iman E., Khairy M.E.-B. Association of β-lactoglobulin gene polymorphism with milk yield, fat and protein in holstein-friesian cattle // World’s Veterinary J. 2016. V. 6. № 3. P. 117–122.
  27. Molee A., Poompramun C., Mernkrathoke P. Effect of casein genes – beta-LGB, DGAT1, GH, and LHR – on milk production and milk composition traits in crossbred Holsteins // Genet. Mol. Res. 2015. V. 14. № 1. P. 2561–2571. https://doi.org/10.4238/2015.March.30.15
  28. Сафина Н.Ю., Зиннатова Ф.Ф., Юльметьева Ю.Р. и др. Полиморфизм гена β-лактоглобулина (LGB) и его взаимосвязь с экономически важными признаками голштинского скота // Зоотехния и ветеринария. 2018. Т. 32. № 9. С. 78–80.
  29. Morkûnienë K., Miceikienë I., Kerzienë S. et al. Genetic diversity of milk protein beta-lactoglobulin and association with production traits genomic values among Holstein cattle // Indian J. Animal Sci. 2018. V. 88. № 11. P. 1289–1293.
  30. Ardicli S., Samli H., Soyudal B. et al. Evaluation of candidate gene effects and environmental factors on reproductive performance of Holstein cows // South African J. Animal Sci. 2019. V. 49. № 2. P. 380–394. https://doi.org/10.4314/sajas.v49i2.17
  31. Şahin Semerci E., Balcioğlu M.S. The effects of κ-casein, β-lactoglobulin, prolactin and DGAT1 polymorphisms on milk yields in Turkish Holstein cows // Turkish J. Veterinary and Animal Sci. 2022. V. 46. № 1. P. 9–17. https://doi.org/10.3906/vet-2105-10
  32. Cendron F., Franzoi M., Penasa M. et al. Effects of β- and κ-casein, and β-lactoglobulin single and composite genotypes on milk composition and milk coagulation properties of Italian Holsteins assessed by FT-MIR // Italian J. Animal Sci. 2021. V. 20. № 1. P. 2243–2253. https://doi.org/10.1080/1828051X.2021.2011442
  33. Heidari M., Azari M.A., Hasani S. et al. Effect of polymorphic variants of GH, Pit-1, and β-LG genes on milk production of Holstein cows // Rus. J. Genet. 2012. V. 48. № 4. P. 417–421.
  34. Kochnev N., Goncharenko G., Mager S. et al. Genotyping of selection-significant polymorphisms of cattle of the Western Siberia // Intern. Sci. and Pract. Conf. “Development of the Agro-lndustrial Complex in the Context of Robotization and Digitalization of Production in Russia and Abroad”. 2020. V. 222. № 03019. P. 1–8. https://doi.org/10.1051/e3sconf/202022203019
  35. Глазко В.И., Андрейченко И.Н., Ковальчук С.Н. и др. Гены-кандидаты контроля характеристик молочной продуктивности крупного рогатого скота // Рос. с.-х. наука. 2016. № 5. С. 45–50.
  36. Smiltina D., Grislis Z. Molecular genetic analysis of milk protein gene polymorphism of dairy cows and breeding bulls in Latvia // Agronomy Res. 2018. V. 16. № 3. P. 900–909. https://doi.org/10.15159/AR.18.084
  37. Ferreira J.B., Guilhermino M.M., Leite J.H.G.M. et al. Polymorphisms of leptin, β-lactoglobulin and pituitary transcription factor have no effect on milk characteristics in crossbred cows // Arquivo Brasileiro de Medicina Veterinaria e Zootecnia. 2019. V. 71. № 2. P. 715–719. https://doi.org/10.1590/1678-4162-10785
  38. Ялуга В.Л., Прожерин В.П., Хабибрахманова Я.А. и др. Полиморфизм генов CSN3, LGB, PRL, GH, LEP у холмогорских коров // Молочное и мясное скотоводство. 2018. № 4. С. 5–8.
  39. Neamt R., Saplacan G., Acatincai S. et al. The influence of CSN3 and LGB polymorphisms on milk production and chemical composition in Romanian Simmental cattle // Acta Biochimica Polonica. 2017. V. 64. № 3. P. 493–497. https://doi.org/10.18388/abp.2016_1454
  40. Kyselova J., Ječmínkova K., Matějíčková J. et al. Physiochemical characteristics and fermentation ability of milk from Czech Fleckvieh cows are related to genetic polymorphisms of β-casein, κ-casein, and β-lactoglobulin // Asian-Australasian J. Animal Sci. 2019. V. 1. № 1. P. 14–22. https://doi.org/10.5713/ajas.17.0924
  41. Huang. W., Peñagaricano F., Ahmad K.R. et al. Association between milk protein gene variants and protein composition traits in dairy cattle // J. Dairy Sci. 2012. V. 95. № 1. P. 440–449. https://doi.org/10.3168/jds.2011-4757
  42. Епишко О.А., Пешко В.В., Пешко Н.Н. Использование генов LGB, PRL и GH в качестве маркеров молочной продуктивности в селекции крупного рогатого скота белорусской черно-пестрой породы // Уч. зап. учреждения образования Витебская ордена “Знак почета” гос. академия ветеринарной медицины. 2018. Т. 54. № 2. С. 84–88.
  43. Cichosz G., Czeczot H., Bielecka M. The anticarcinogenic potential of milk fat // Annals Agricultural and Environmental Med. 2020. V. 27. № 4. P. 512–518. https://doi.org/10.26444/aaem%2F116095
  44. Ганиева Е.С., Канарейкина С.Г., Хабирова Ф.А., Канарейкин В.И. Сравнительный анализ биологической и пищевой ценности молока разных сельскохозяйственных животных // Вестник БГАУ. 2021. № 1. С. 49–55. https://doi.org/10.31563/1684-7628-2021-57-1-49-55
  45. Dokso A., Ivanković A., Brka M. et al. Utjecaj genetskih varijanti β-laktoglobulina, κ-kazeina i αs1-kazei na na količinu i kvalitetu mlijeka holstein, simentalske i smeđe pasmine goveda u Hrvatskoj // Mljekarstvo. 2014. V. 64. № 1. P. 49–56.
  46. Singh U., Deb R., Kumar S. et al. Association of prolactin and beta-lactoglobulin genes with milk production traits and somatic cell count among Indian Frieswal (HF × Sahiwal) cows // Biomarkers and Genomic Medicine. 2015. V. 7. № 1. P. 38–42. https://doi.org/10.1016/j.bgm.2014.07.001
  47. Čítek J., Brzáková M., Hanusová L. et al. Somatic cell score: Gene polymorphisms and other effects in Holstein and Simmental cows // Animal Bioscience. 2022. V. 35. № 1. P. 13–21. https://doi.org/10.5713/ab.20.0720
  48. Zepeda-Batista J.L., Saavedra-Jiménez L.A., Ruíz-Flores A. et al. Potential influence of κ-casein and β-lactoglobulin genes in genetic association studies of milk quality traits // Asian-Australasian J. Animal Sci. 2017. V. 30. № 12. P. 1684–1688. https://doi.org/10.5713/ajas.16.0481

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (83KB)

Copyright (c) 2023 Е.В. Парыгина, И.С. Кожевникова

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies