Chloroplast DNA Markers on the Phylogeography Study of Roburoid Oaks (Quercus L. sect. Quercus, Fagaceae) in the Crimean-Caucasian Region

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The variability of five fragments of chloroplast DNA (ASq, CDq, TFq, trnH-psbA and trnK-matK) with a total length of more than 10,000 bp in three species of roburoid oaks of the Crimean-Caucasian region (Q. robur, Q. petraea, Q. pubescens) was studied. A total of 11 haplotypes were found in 290 individuals from 20 populations, 10 of which differed from the haplotypes of the main range. The obtained results show a pronounced structure of the geographical distribution of haplotypes of roburoid oaks in the Crimea and the Caucasus, and the chloroplast haplotypes of the region belong to several divergent phylogenetic lines. A comparison with data from other studies was carried out, with an assessment of the degree of effectiveness of the use of various chloroplast fragments and markers. The isolated phylogenetic position of the haplotypes of the Crimean-Caucasian populations and deep differences from the haplotypes of the main area allows us to conclude that robouroid oaks have historically been isolated for a long time in the Caucasus and Crimea. At the same time, the presence of common haplotypes indicates closer historical ties between the Crimean-Caucasian populations with Asia Minor and the Balkans. All haplotypes are identified by three fragments (ASq, CDq and TFq), with a sufficient level of variability and suitable for solving problems of oak phylogeography in the Crimean-Caucasian region. The trnH-psbA and trnK-matK markers had a low level of variability and did not reveal additional haplotypes. Optimized genotyping options have been proposed, including both step by step sequencing, and a combination of analysis of chloroplast DNA microsatellite loci (cpSSR), restriction analysis (PCR-RFLP), and sequencing. To assess the variability of markers in a larger taxonomic range, representatives of other sections of the genus Quercus were included in the analysis. It was shown that the oak-specific primers proposed for ASq, CDq, and TFq fragments are suitable for species of other sections.

About the authors

S. A. Semerikova

Institute of Plant and Animal Ecology, Ural Branch of Russian Academy of Science

Author for correspondence.
Email: s.a.semerikova@ipae.uran.ru
Russia, 620144, Ekaterinburg

References

  1. Kremer A., Hipp A.L. Oaks: an evolutionary success story // New Phytologist. 2020. V. 226. № 4. P. 987–1011. https://doi.org/10.1111/nph.16274
  2. Denk T., Grimm G.W., Manos P.S. et al. An updated infrageneric classification of the oaks: Review of previous taxonomic schemes and synthesis of evolutionary patterns // Oaks Physiological Ecology. Exploring the Functional Diversity of Genus Quercus L. / Eds Gil-Pelegrin E., Peguero-Pina J.J., Sancho-Knapik D. Cham, Switzerland: Springer, 2017. V. 7. P. 13–38.
  3. Hipp A.L., Manos P.S., Hahn M. et al. Genomic landscape of the global oak phylogeny // New Phytologist. 2020. V. 226. № 4. P. 1198–1212. https://doi.org/10.1111/nph.16162
  4. Тахтаджян А.Л. Флористические области Земли. Л.: Наука, Ленингр. отд., 1978. 247 с.
  5. Конспект флоры Кавказа: в 3 томах / Под ред. Кудряшовой Г.Л., Татанова И.В. СПб.; М.: Тов-во науч. изданий КМК, 2012. Т. 3. Ч. 2. 623 с.
  6. Ена А.В. Природная флора Крымского полуострова. Симферополь: Н. Орiанда, 2012. 232 с.
  7. Shatilova I., Mchedlishvili N., Rukhadze L., Kvavadze E. The history of the flora and vegetation of Georgia (South Caucasus). Tbilisi: Georgian National Museum, Institute of Paleobiology, 2011. 200 p.
  8. Cordova C.E., Gerasimenko N.P., Lehman P.H., Kliukin A.A. Late Pleistocene and Holocene paleoenvironments of Crimea: pollen, soils, geomorphology, and geoarchaeology // Geology and Geoarchaeology of the Black Sea Region: Beyond the Flood Hypothesis / Eds Buyne-vich I.V., Yanko-Hombach V., Gilbert A.S., Martin R.E. Book series: Geological Society of America Special Paper. 2011. V. 473. P. 133–164. https://doi.org/10.1130/2011.2473(09)
  9. Меницкий Ю.Л. Дубы Азии. Л.: Наука, 1984. 315 с.
  10. Семериков Л.Ф. Популяционная структура древесных растений (на примере видов дуба европейской части СССР и Кавказа). М.: Наука, 1986. 140 с.
  11. Dumolin-Lapegue S., Demesure B., Fineschi S. et al. Phylogeographic structure of white oaks throughout the European continent // Genetics. 1997. V. 146. № 4. P. 1475–1487.
  12. Petit R.J., Csaikl U.M., Bordacs S. et al. Chloroplast DNA variation in European white oaks – phylogeography and patterns of diversity based on data from over 2600 populations // Forest Ecol. Management. 2002. V. 156. № 1–3. P. 5–26. https://doi.org/10.1016/S0378-1127(01)00645-4
  13. Petit R.J., Brewer S., Bordacs S. et al. Identification of refugia and postglacial colonisation routes of European white oaks based on chloroplast DNA and fossil pollen evidence // Forest Ecol. Management. 2002. V. 156. P. 49–74. https://doi.org/10.1016/S0378-1127(01)00634-X
  14. Bordacs S., Popescu F., Slade D. et al. Chloroplast DNA variation of white oaks in northern Balkans and in the Carpathian Basin // Forest Ecol. Management. 2002. V. 156. № 1–3. P. 197–209. https://doi.org/10.1016/S0378-1127(01)00643-0
  15. Slade D., Skvorc Z., Ballian D. et al. The chloroplast DNA polymorphisms of white oaks of section Quercus in the Central Balkans // Silvae Genetica. 2008. V. 57. № 4–5. P. 227–234. https://doi.org/10.1515/sg-2008-0035
  16. Curtu A.L., Sofletea N., Toader A.V., Enescu M.C. Leaf morphological and genetic differentiation between Quercus robur L. and its closest relative, the drought-tolerant Quercus pedunculiflora K. Koch. // Annals Forest Science. 2011. V. 68. № 7. P. 1163–1172. https://doi.org/10.1007/s13595-011-0105-z
  17. Moldovan I.C., Sofletea N., Curtu A.L. et al. Chloroplast DNA diversity of oak species in Eastern Romania // Not. Bot. Hort. Agrobot. Cluj. 2010. V. 38. Iss. 3. P. 302–307.
  18. Ekhvaia J., Simeone M.C., Silakadze N., Abdaladze O. Morphological diversity and phylogeography of the Georgian durmast oak (Q. petraea subsp iberica) and related Caucasian oak species in Georgia (South Caucasus) // Tree Genet. Genom. 2018. V. 14. № 2. https://doi.org/10.1007/s11295-018-1232-6
  19. Tekpinar A.D., Aktas C., Kansu C. et al. Phylogeography and phylogeny of genus Quercus L. (Fagaceae) in Turkey implied by variations of trnT((UGU))-L-(UAA)-F ((GAA)) chloroplast DNA region // Tree Genet. Genom. 2021. V. 17. Iss. 5.https://doi.org/10.1007/s11295-021-01522-x
  20. Семерикова С.А., Исаков И.Ю., Семериков В.Л. Изменчивость хлоропластной ДНК и филогеография дуба черешчатого Quercus robur L. в восточной части ареала // Генетика. 2021. Т. 57. № 1. С. 56–71. https://doi.org/10.31857/S0016675821010136
  21. Degen B., Yanbaev Y., Mader M. et al. Impact of gene flow and introgression on the range wide genetic structure of Quercus robur (L.) in Europe // FORESTS. 2021. V. 12. Iss. 10.https://doi.org/10.3390/f12101425
  22. Simeone M.C., Piredda R., Papini A. et al. Application of plastid and nuclear markers to DNA barcoding of Euro-Mediterranean oaks (Quercus, Fagaceae): problems, prospects and phylogenetic implications // Bot. J. Linn. Soc. 2013. V. 172. Iss. 4. P. 478–499. https://doi.org/10.1111/boj.12059
  23. Piredda R., Simeone M.C., Attimonelli M. et al. Prospects of barcoding the Italian wild dendroflora: oaks reveal severe limitations to tracking species identity // Mol. Ecol. Resources. 2011. V. 11. Iss. 1. P. 72–83. https://doi.org/10.1111/j.1755-0998.2010.02900.x
  24. Taberlet P., Gielly L., Pautou G., Bouvet J. Universal primers for amplification of 3 non-coding regions of chloroplast DNA // Plant Mol. Biology. 1991. V. 17. № 5. P. 1105–1109. https://doi.org/10.1007/BF00037152
  25. Demesure B., Sodzi N., Petit R.J. A set of universal primers for amplification of polymorphic noncoding regions of mitochondrial and chloroplast DNA in plants // Mol. Ecol. 1995. V. 4. № 1. P. 129–131. https://doi.org/10.1111/j.1365-294X.1995.tb00201.x
  26. Devey M.E., Bell J.C., Smith D.N. et al. A genetic linkage map for Pinus radiata based on RFLP, RAPD and microsatellite markers // Theor. Appl. Genet. 1996. V. 92. № 6. P. 673–679. https://doi.org/10.1007/BF00226088
  27. Hall T.A. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT // Nucl. Acids Symp. Series. 1999. V. 41. P. 95–98.
  28. Ronquist F., Huelsenbeck J.P. MrBAYES 3: Bayesian phylogenetic inference under mixed models // Bioinformatics. 2003. V. 19. № 12. P. 1572–1574. https://doi.org/10.1093/bioinformatics/btg180
  29. Swofford D.L. PAUP*. Phylogenetic analysis using parsimony (* and other methods). Version 4.0 beta10. Sunderland: Sinauer Associates, Massachusetts, 2002.
  30. Семерикова С.А., Исаков И.Ю., Семериков В.Л. Изменчивость хлоропластной ДНК отражает историю Tilia cordata s. l. в восточной части ареала // Генетика. 2020. Т. 56. № 2. С. 188–200. https://doi.org/10.1134/S0016675820020113
  31. https://quercusportal.pierroton.inra.fr/index.php?p= GENOMIC_SEQ
  32. Sork V.L., Fitz-Gibbon S.T., Puiu D. et al. First draft assembly and annotation of the genome of a California endemic oak Quercus lobata Nee (Fagaceae) // G3: Genes Genomes Genetics. 2016. V. 6. № 11. P. 3485–3495. https://doi.org/10.1534/g3.116.030411
  33. Pham K.K., Hipp A.L., Manos P.S., Cronn R.C. A time and a place for everything: Phylogenetic history and geography as joint predictors of oak plastome phylogeny // Genome. 2017. V. 60. № 9. P. 720–732. https://doi.org/10.1139/gen-2016-0191
  34. Librado P., Rozas J. DnaSP v5: A software for comprehensive analysis of DNA polymorphism data // Bioinformatics. 2009. V. 25. № 11. P. 1451–1452. https://doi.org/10.1093/bioinformatics/btp187
  35. Deguilloux M.F., Dumolin-Lapegue S., Gielly L. et al. A set of primers for the amplification of chloroplast microsatellites in Quercus // Mol. Ecol. Notes. 2003. V. 3. № 1. P. 24–27. https://doi.org/10.1046/j.1471-8286.2003.00339.x
  36. Simeone M.C., Grimm G.W., Papini A. et al. Plastome data reveal multiple geographic origins of Quercus Group Ilex // Peer. J. 2016. V. 4. Article number 40e1897. https://doi.org/10.7717/peerj.1897
  37. Curtu A.L., Gailing O., Finkeldey R. Evidence for hybridization and introgression within a species-rich oak (Quercus spp.) community // BMC Evolutionary Biology. 2007. V. 7. Article number 218. https://doi.org/10.1186/1471-2148-7-218
  38. Degen B., Blanc-Jolivet C., Bakhtina S. et al. Applying targeted genotyping by sequencing with a new set of nuclear and plastid SNP and indel loci for Quercus robur and Quercus petraea // Conserv. Genet. Resour. 2021. V. 13. P. 345–347. https://doi.org/10.1007/s12686-021-01207-6

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (1MB)
3.

Download (121KB)

Copyright (c) 2023 С.А. Семерикова

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies