Study of Myb114 Gene Polymorphism in the Cole Crops (Brassica oleracea L.) in Connection with Anthocyanin Biosynthesis Regulation Based on Comparison with the MYB Factors of Vegetable Nightshades (Solanaceae)

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

In order to study a regulation mechanism for one of the most ancient processes of anthocyanin biosynthesis in plants based on comparison of R2R3-MYB genes in Solanaceae (S. lycopersicum: An1, An2; S. melongena: Myb1; C. annuum: Myb113-like1 и Myb113-like2) and Brassicaeae crops, a search for orthologous sequences in Brassica oleracea was performed. A sequence encoding MYB114 TF was found to be the closest in a nucleotide structure to the previously investigated genes in Solanaceae. Primers were selected and a comparative analysis of Myb114 gene sequences was performed in B. oleracea varieties (white cabbage, red cabbage, kale, cauliflower, broccoli, and kohlrabi) with a wide intraspecies diversity by the anthocyanin accumulation in leaves and various food organs: heads, curds and stems. Alignment of Myb114 sequences revealed a number of gene polymorphisms that closely correlate with high anthocyanin accumulation in B. oleracea leaves, including 3 SNPs in exon regions and a 271 bp deletion in the 1st intron. The identified SNPs lead to the replacement of two amino acids located in the region of DNA-binding domains, which leads to a change in the binding efficiency of this transcription factor with the promoters of structural biosynthesis genes and a decrease in their expression level in the forms without anthocyanin accumulation in leaves compared with the forms with their accumulation in vegetative plant parts. A molecular marker MYB114.2 has been proposed that may be used for the identification of headed cabbages and kales with high/low anthocyanin accumulation. By the amino acid structure and phenotypic manifestation (regulation of anthocyanin accumulation in leaves), Myb114 B. oleracea is the closest to Ant2 tomato, Myb2 eggplant and Myb113-like2 pepper alleles. A high degree of conservatism of the SANT DNA-binding domains of MYB114 TF of B. oleracea and R2R3-MYB TF of nightshades was established.

About the authors

D. A. Fateev

Federal Research Center Vavilov All-Russian Institute of Plant Genetic Resources (VIR)

Author for correspondence.
Email: fateevdm1@gmail.com
Russia, 190000, St. Petersburg

F. A. Berensen

Federal Research Center Vavilov All-Russian Institute of Plant Genetic Resources (VIR)

Email: fateevdm1@gmail.com
Russia, 190000, St. Petersburg

A. M. Artemyeva

Federal Research Center Vavilov All-Russian Institute of Plant Genetic Resources (VIR)

Email: fateevdm1@gmail.com
Russia, 190000, St. Petersburg

O. G. Babak

Institute of Genetics and Cytology of the National Academy of Sciences of Belarus

Email: fateevdm1@gmail.com
Republic of Belarus, 220072, Minsk

K. K. Yatsevich

Institute of Genetics and Cytology of the National Academy of Sciences of Belarus

Email: fateevdm1@gmail.com
Republic of Belarus, 220072, Minsk

E. V. Drozd

Institute of Genetics and Cytology of the National Academy of Sciences of Belarus

Email: fateevdm1@gmail.com
Republic of Belarus, 220072, Minsk

A. V. Kilchevsky

Institute of Genetics and Cytology of the National Academy of Sciences of Belarus

Email: fateevdm1@gmail.com
Republic of Belarus, 220072, Minsk

References

  1. Zhai R., Wang Z., Yang C. et al. PbGA2ox8 induces vascular-related anthocyanin accumulation and contributes to red stripe formation on pear fruit // Hortic Res. 2019. № 6. https://doi.org/10.1038/s41438-019-0220-9
  2. Li H., Li Y., Yu J. et al. MdMYB8 is associated with flavonol biosynthesis via the activation of the MdFLS promoter in the fruits of Malus crabapple //Hortic. Res. 2020. № 7. https://doi.org/10.1038/s41438-020-0238-z
  3. Mazewski C., Liang K., Gonzalez de Mejia E. Comparison of the effect of chemical composition of anthocyanin-rich plant extracts on colon cancer cell proliferation and their potential mechanism of action using in vitro, in silico, and biochemical assays // Food Chem. 2018. V. 242. P. 378–388.https://doi.org/10.1016/j.foodchem.2017.09.086
  4. Middleton E.Jr., Kandaswami C., Theoharides T.C. The effects of plant flavonoids on mammalian cells: Implications for inflammation, heart disease, and cancer // Pharmacol. Rev. 2000. V. 52. P. 673–751.
  5. Albert N.W., Davies K.M., Lewis H.D. et al. A conserved network of transcriptional activators and repressors regulates anthocyanin pigmentation in eudicots // Plant Cell. 2014. V. 26. P. 962–980. https://doi.org/10.1105/tpc.113.122069
  6. Хлесткина Е.К., Шоева О.Ю., Гордеева Е.И. Гены биосинтеза флавоноидов пшеницы // Вавилов. журн. генетики и селекции. 2017. Т. 18. № 4/1. С. 784–796.
  7. Liu Y., Tikunov Y., Schouten R.E. et al. Anthocyanin biosynthesis and degradation mechanisms in Solanaceous Vegetables: a review // Frontiers in Chemistry. 2018. V. 6. P. 1–17. https://doi.org/10.3389/fchem.2018.00052
  8. Naing A.H., Kim C.K. Roles of R2R3-MYB transcription factors in transcriptional regulation of anthocyanin biosynthesis in horticultural plants // Plant Mol. Biol. 2018. V. 98. P. 1–18. https://doi.org/10.1007/s11103-018-0771-4
  9. Xie L., Li F., Zhang S. et al. Mining for candidate genes in an introgression line by using RNA Sequencing: The anthocyanin overaccumulation phenotype in Brassica // Front. Plant Sci. 2016. V. 7. P. 1245. https://doi.org/10.3389/fpls.2016.01245
  10. Guo N., Cheng F., Wu J. et al. Anthocyanin biosynthetic genes in Brassica rapa // BMC Genomics. 2014. V. 15. P. 71–81. https://doi.org/10.1186/1471-2164-15-426
  11. Petroni K., Tonelli C. Recent advances on the regulation of anthocyanin synthesis in reproductive organs // Plant Sci. 2011. V. 181. P. 219–229. https://doi.org/10.1016/j.plantsci.2011.05.009
  12. Baudry A., Heim A.M., Dubreucq B. et al. TT2, TT8, and TTG1 synergistically specify the expression of BANYULS and proanthocyanidin biosynthesis in Arabidopsis thaliana // Plant J. 2004. V. 39(3). P. 366–380. https://doi.org/10.1111/j.1365-313X.2004.02138.x
  13. Babak O., Nikitinskaya T., Nekrashevich N. et al. Identification of DNA markers of anthocyanin biosynthesis disorders based on the polymorphism of anthocyanin 1 tomato ortholog genes in pepper and eggplant // Crop. Breed. Genet. Genom. 2020. V. 2. https://doi.org/10.20900/cbgg20200011
  14. Chiu L.W., Zhou X., Burke S. et al. The purple cauliflower arises from activation of a MYB transcription factor // Plant Physiol. 2010. V. 154. P. 1470–1480. https://doi.org/10.1104/pp.110.164160
  15. Yuan Y.X., Chiu L.W., Li L. Transcriptional regulation of anthocyanin biosynthesis in red cabbage // Planta. 2009. V. 230. P. 1141–1153. https://doi.org/10.1007/s00425-009-1013-4
  16. Jin S.W., Rahim M.A., Kim H.T. et al. Molecular analysis of anthocyanin-related genes in ornamental cabbage // Genome. 2018. V. 61. P. 111–120. https://doi.org/10.1139/gen-2017-0098
  17. Rahim M.A., Robin A.H.K., Natarajan S. et al. Identification and characterization of anthocyanin biosynthesis-related genes in Kohlrabi // Appl. Biochem. Biotechnol. 2018. V. 184. P. 1120–1141. https://doi.org/10.1007/s12010-017-2613-2
  18. Zhang X., Zhang K., Wu J. et al. QTL-Seq and sequence assembly rapidly mapped the gene BrMYBL2.1 for the purple trait in Brassica rapa // Sci. Rep. 2020. V. 10. https://doi.org/10.1038/s41598-020-58916-5
  19. Wang J., Su T.B., Yu Y.J. Molecular characterization of BrMYB73: A candidate gene for the purple-leaf trait in Brassica rapa // Int. J. Agric. Biol. 2019. V. 22. P. 122–130. https://doi.org/10.17957/IJAB/15.1041
  20. Zhao Z., Xiao L., Xing X. et al. Fine mapping the BjPl1 gene for purple leaf color in B2 of Brassica juncea L. through comparative mapping and whole-genome re-sequencing // Euphytica. 2017. V. 213. P. 80–90. https://doi.org/10.1007/s10681-017-1868-6
  21. Xie Q., Hu Z., Zhang Y. et al. Accumulation and molecular regulation of anthocyanin in purple tumorous stem mustard (Brassica juncea var. tumida Tsen et Lee) // J. Agric. Food Chem. 2014. V. 62. P. 7813–7821. https://doi.org/10.1021/jf501790a
  22. Okonechnikov K., Golosova O., Fursov M. Unipro UGENE: A unified bioinformatics toolkit // Bioinformatics. 2012. V. 28. P. 1166–1167. https://doi.org/10.1093/bioinformatics/bts091
  23. Bradbury P.J., Zhang Z., Kroon D.E. et al. TASSEL: Software for association mapping of complex traits in diverse samples // Bioinformatics. 2007. V. 23. P. 2633–2635. https://doi.org/10.1093/bioinformatics/btm308
  24. Zhang B., Hu Z., Zhang Y. et al. A putative functional MYB transcription factor induced by low temperature regulates anthocyanin biosynthesis in purple kale (Brassica oleracea var. acephala f. tricolor) // Plant Cell Rep. 2012. V. 31. P. 281–289. https://doi.org/10.1007/s00299-011-1162-3
  25. Бабак О.Г., Некрашевич Н.А., Никитинская Т.В. и др. Изучение полиморфизма генов Myb-факторов на основе сравнительной геномики овощных пасленовых культур (томат, перец, баклажан) для поиска ДНК-маркеров, дифференцирующих образцы по накоплению антоцианов // Докл. Национ. акад. наук Беларуси. 2019. Т. 63. № 6. С. 721–729. https://doi.org/10.29235/1561-8323-2019-63-6-721-729
  26. Zhang Y., Hu Z., Zhu M. et al. Anthocyanin accumulation and molecular analysis of correlated genes in purple kohlrabi (Brassica oleracea var. gongylodes L.) // J. Agr. Food Chem. 2015. V. 63. P. 4160–4169. https://doi.org/10.1021/acs.jafc.5b00473
  27. Kiferle C., Fantini E., Bassolino L. et al. Tomato R2R3-MYB proteins SlANT1 and SlAN2: same protein activity, different roles // PLoS One. 2015. V. 10. https://doi.org/10.1371/journal.pone.0136365

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (1MB)
3.

Download (408KB)
4.

Download (2MB)
5.

Download (1MB)

Copyright (c) 2023 Д.А. Фатеев, Ф.А. Беренсен, А.М. Артемьева, О.Г. Бабак, К.К. Яцевич, Е.В. Дрозд, А.В. Кильчевский

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies