Pre-Harvest Sprouting in Soft Winter Wheat (Triticum aestivum L.) and Evaluation Methods

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The review is devoted to pre-harvest sprouting (PHS) in soft winter wheat (Triticum aestivum L.) as one of the main problems faced by specialists in the field of genetics and selection of grain crops. Pre-harvest sprouting leads to a decrease in yields and economic losses. In the present work the internal and external factors which influence PHS grain crops as well as their interrelation, has been described. The characteristic for efficiency and featuresthe use of physiology-biochemical and molecular genetic methods to evaluate the pre-harvest sprouting resistance of soft wheat grain are given.

About the authors

A. V. Fedyaeva

Federal Research Center Institute of Cytology and Genetics, Siberian Branch
of Russian Academy of Sciences; Siberian Institute of Plant Physiology and Biochemistry of the Siberian Branch
of the Russian Academy of Sciences

Author for correspondence.
Email: fedyaeva.anna@mail.ru
Russia, 630090, Novosibirsk; Russia, 664033, Irkutsk

E. A. Salina

Federal Research Center Institute of Cytology and Genetics, Siberian Branch
of Russian Academy of Sciences; Kurchatov Genomics Center, Institute of Cytology and Genetics, Siberian Brauch
of the Russian Academy of Sciences

Email: fedyaeva.anna@mail.ru
Russia, 630090, Novosibirsk; Russia, 630090, Novosibirsk

V. K. Shumny

Federal Research Center Institute of Cytology and Genetics, Siberian Branch
of Russian Academy of Sciences

Email: fedyaeva.anna@mail.ru
Russia, 630090, Novosibirsk

References

  1. Singh C., Kamble U.R., Gupta V. et al. Pre-harvest sprouting in wheat: current status and future prospects // J. Cereal Research. 2021. V. 13. P. 1–22. https://doi.org/10.25174/2582-2675/2021/114484
  2. Gao X., Hu C.H., Li H.Z. et al. Factors affecting pre-harvest sprouting resistance in wheat (Triticum aestivum L.): a review // J. Anim. Plant Sci. 2013. V. 23. № 2. P. 556–565.
  3. Kocheshkova A.A., Kroupin P.Y., Bazhenov M.S. et al. Pre-harvest sprouting resistance and haplotype variation of ThVp-1 gene in the collection of wheat-wheatgrass hybrids // PLoS One. 2017. V. 12. № 11. P. e0188049. https://doi.org/10.1371/journal.pone.0188049
  4. Домаш В.И., Иванов О.А., Гордей И.А. и др. Роль гидролитических ферментов в устойчивости злаковых культур к прорастанию зерна в колосе // Изв. Национ. академии наук Беларуси. Серия биол. наук. 2017. № 1. С. 77–83.
  5. Nakamura S. Grain dormancy genes responsible for preventing pre-harvest sprouting in barley and wheat // Breed. Sci. 2018. V. 68. P. 295–304. https://doi.org/10.1270/jsbbs.17138
  6. Olaerts H., Courtin C.M. Impact of preharvest sprouting on endogenous hydrolases and technological quality of wheat and bread: A review // Comprehensive Reviews in Food Science and Food Safety. 2018. V. 17. № 3. P. 698–713.
  7. Vetch J.M., Stougaard R.N., Martin J.M., Giroux M.J. Review: Revealing the genetic mechanisms of pre-harvest sprouting in hexaploid wheat (Triticum aestivum L.) // Plant Sci. 2019. V. 281. P. 180–185. https://doi.org/10.1016/j.plantsci.2019.01.004
  8. Ali A., Cao J., Jiang H. et al. Unraveling molecular and genetic studies of wheat (Triticum aestivum L.) resistance against factors causing pre-harvest sprouting // Agronomy. 2019. V. 9. № 3. P. 117. https://doi.org/10.3390/agronomy9030117
  9. Nonogaki H., Barrero J.M., Li C. Editorial: Seed dormancy, germination, and pre-harvest sprouting // Frontiers in Plant Science. 2018. V. 9. № 1783. https://doi.org/10.3389/fpls.2018.01783
  10. Reddy L.V., Metzger R.J., Ching T.M. Effect of temperature on seed dormancy of wheat // Crop Sci. 1985. V. 25. № 3. P. 455–458. https://doi.org/10.2135/cropsci1985.0011183X00250-0030007x
  11. Smith G., Gooding M. Models of wheat grain quality considering climate, cultivar and nitrogen effects // Agricultural and Forest Meteorology. 1999. V. 94. № 3–4. P. 159–170. https://doi.org/10.1016/s0168-1923(99)00020-9
  12. Крупнова О.В. О сопоставлении качества зерна яровой и озимой пшеницы в связи с делением на рыночные классы (обзор) // С.-х. биология. 2013. Т. 48. № 1. С. 15–25.
  13. Biddulph T.B., Mares D.J., Plummer J.A., Setter T.L. Drought and high temperature increases pre-harvest sprouting tolerance in a genotype without grain dormancy // Euphytica. 2005. V. 143. P. 277–283. https://doi.org/10.1007/s10681-005-7882-0
  14. Himi E., Mares D.J., Yanagisawa A., Noda K. Effect of grain colour gene (R) on grain dormancy and sensitivity of the embryo to abscisic acid (ABA) in wheat // J. Exp. Bot. 2002. V. 53. № 374. P. 1569–1574. https://doi.org/10.1093/jxb/erf005
  15. Jacobsen J.V., Pearce D.W., Poole A.T. et al. Abscisic acid, phaseic acid and gibberellin contents associated with dormancy and germination in barley // Physiol. Plant. 2002. V. 115. № 3. P. 428–441. https://doi.org/10.1034/j.1399-3054.2002.1150313.x
  16. Yang Y., Zhang C.L., Chen X.M. et al. Identification of wheat genotypes with preharvest sprouting tolerance by combinated analysis of spike germination rate, germination index and molecular marker Vp1B3 // J. Triticeae Crops. 2007. V. 27. P. 577–582.
  17. Linkies A., Leubner-Metzger G. Beyond gibberellins and abscisic acid: How ethylene and jasmonates control seed germination // Plant Cell Rep. 2012. V. 31. P. 253–270. https://doi.org/10.1007/s00299-011-1180-1
  18. Barrero J.M., Mrva K., Talbot M.J. et al. Genetic, hormonal and physiological analysis of late maturity alpha-amylase (LMA) in wheat // Plant Physiol. 2013. V. 161. P. 1265–1277. https://dx.doi.org/10.1104%2Fpp.112.209502
  19. Liu A., Gao F., Kanno Y. et al. Regulation of wheat seed dormancy by after-ripening is mediated by specific transcriptional switches that induce changes in seed hormone metabolism and signaling // PLoS One. 2013. V. 8. № 2. P. e56570. https://doi.org/10.1371/journal.pone.0056570
  20. Chitnis V.R., Gao F., Yao Z. et al. After-ripening induced transcriptional changes of hormonal genes in wheat seeds: The cases of brassinosteroids, ethylene, cytokinin and salicylic acid // PLoS One. 2014. V. 9. № 1. P. e87543. https://doi.org/10.1371/journal.pone.0087543
  21. Shu K., Liu X.D., Xie Q., He Z.H. Two faces of one seed: Hormonal regulation of dormancy and germination // Mol. Plant. 2016. V. 9. №. 1. P. 34–45. https://doi.org/10.1016/j.molp.2015.08.010
  22. Kucera B., Cohn M.A., Leubner-Metzger G. Plant hormone interactions during seed dormancy release and germination // Seed Sci. Res. 2005. V. 15. P. 281–307. https://doi.org/10.1079/SSR2005218
  23. Kermode A.R. Role of abscisic acid in seed dormancy // J. Plant Growth Regul. 2005. V. 24. P. 319–344. https://doi.org/10.1007/s00344-005-0110-2
  24. Chono M., Matsunaka H., Seki M. et al. Isolation of a wheat (Triticum aestivum L.) mutant in ABA8'-hydroxylase gene: Effect of reduced ABA catabolism on germination inhibition under field condition // Breeding Science. 2013. V. 63. № 1. P. 104–115. https://dx.doi.org/10.1270%2Fjsbbs.63.104
  25. Okamoto M., Kuwahara A., Seo M. et al. CYP707A1 and CYP707A2, which encode abscisic acid 8′-hydroxylases, are indispensable for proper control of seed dormancy and germination in Arabidopsis // Plant Physiol. 2006. V. 141. № 1. P. 97–107. https://doi.org/10.1104/pp.106.079475
  26. Nambara E., Okamoto M., Tatematsu K. et al. Abscisic acid and the control of seed dormancy and germination // Seed Sci. Res. 2010. V. 20. P. 55–67. https://doi.org/10.1017/S0960258510000012
  27. King R.W. Abscisic acid in seed development // The Physiology and Biochemistry of Seed Development, Dormancy and Germination / Ed. Khan A.A. Amsterdam: Elsevier Biomedical Press, 1982. P. 157–181.
  28. Walker-Simmons M. ABA levels and sensitivity in developing wheat embryos of sprouting resistant and susceptible cultivars // Plant Physiol. 1987. V. 84. № 1. P. 61–66. https://dx.doi.org/10.1104%2Fpp.84.1.61
  29. Suzuki T., Matsuura T., Kawakami N., Noda K. Accumulation and leakage of abscisic acid during embryo development and seed dormancy in wheat // Plant Growth Regul. 2000. V. 30. P. 253–260. https://doi.org/10.1023/A:1006320614530
  30. van de Velde K., Chandler P.M., van der Straeten D., Rohde A. Differential coupling of gibberellin responses by Rht-B1c suppressor alleles and Rht-B1b in wheat highlights a unique role for the DELLA N-terminus in dormancy // J. Experim. Botany. 2017. V. 68. № 3. P. 443–455. https://doi.org/10.1093/jxb/erw471
  31. Ramaih S., Guedira M., Paulsen G.M. Relationship of indoleacetic acid and tryptophan to dormancy and preharvest sprouting of wheat // Funct. Plant Biol. 2003. V. 30. № 9. P. 939–945. https://doi.org/10.1071/FP03113
  32. Caliskan M., Cuming A.C. Spatial specificity of H2O2-generating oxalate oxidase gene expression during wheat embryo germination // Plant J. 1998. V. 15. № 2. P. 165–171. https://doi.org/10.1046/j.1365-313x.1998.00191.x
  33. Bykova N.V., Hoehn B., Rampitsch C. et al. Thiol redox-sensitive seed proteome in dormant and non dormant genotypes of wheat // Phytochemistry. 2011. V. 72. № 10. P. 1162–1172. https://doi.org/10.1016/j.phytochem.2010.12.021
  34. Graeber K.A.I., Nakabayashi K., Miatton E. et al. Molecular mechanisms of seed dormancy // Plant Cell Environ. 2012. V. 35. № 10. P. 1769–1786. https://doi.org/10.1111/j.1365-3040.2012.02542.x
  35. Patwa N., Penning B.W. Environmental impact on cereal crop grain damage from pre-harvest sprouting and late maturity alpha-amylase // Sustainable Agriculture in the Era of Climate Change. 2020. P. 23–41. https://doi.org/10.1007/978-3-030-45669-6_2
  36. Skerritt J.H., Heywood R.H. A five-minute field test for on-farm detection of pre-harvest sprouting in wheat // Crop Science. 2000. V. 40. № 3. P. 742–756. https://doi.org/10.2135/cropsci2000.403742x
  37. Gavazza M.I.A., Bassoi M.C., de Carvalho T.C. et al. Methods for assessment of pre-harvest sprouting in wheat cultivars // Pesquisa Agropecuária Brasileira. 2012. V. 47. № 7. P. 928–933. https://doi.org/10.1590/S0100-204X2012000700008
  38. Рубец В.С., Нгуен Т.Т.Л., Пыльнев В.В. Система селекционной оценки устойчивости озимой тритикале к прорастанию на корню // Изв. ТСХА. 2012. № 1. С. 132–141.
  39. King R.W., von Wettstein-Knowles P. Epicuticular waxes and regulation of ear wetting and pre-harvest sprouting in barley and wheat // Euphytica. 2000. V. 112. P. 157–166. https://doi.org/10.1023/A:1003832031695
  40. Ram M.S., Dowell F.E., Seitz L., Lookhart G. Development of standard procedures for a simple, rapid test to determine wheat color class // Cereal Chem. 2002. V. 79. № 2. P. 230–237. https://doi.org/10.1094/CCHEM.2002.79.2.230
  41. Mares D.J., Mrva K. Wheat grain preharvest sprouting and late maturity alpha-amylase // Planta. 2014. V. 240. P. 1167–1178. https://doi.org/10.1007/s00425-014-2172-5
  42. Lang J., Fu Y., Zhou Y. et al. Myb10-D confers PHS-3D resistance to pre-harvest sprouting by regulating NCED in ABA biosynthesis pathway of wheat // New Phytologist. 2021. V. 230. P. 1940–1952. https://doi.org/10.1111/nph.17312
  43. Lin M., Zhang D., Liu S. et al. Genome-wide association analysis on pre-harvest sprouting resistance and grain color in U.S. winter wheat // BMC Genomics. 2016. V. 17. P. 794. https://doi.org/10.1186/s12864-016-3148-6
  44. Gfeller F., Svejda F. Inheritance of post-harvest seed dormancy and kernel colour in spring wheat lines // Can. J. Plant Sci. 1960. V. 40. № 1. P. 1–6. https://doi.org/10.4141/cjps60-001
  45. De Pauw R.M., McCaig T.N. Recombining dormancy and white seed color in a spring wheat cross // Can. J. Plant Sci. 1983. V. 63. № 3. P. 581–589. https://doi.org/10.4141/cjps83-074
  46. He Z.T., Chen X.L., Han Y.P. Progress on preharvest sprouting resistance in white // J. Triticeae Crops. 2000. V. 20. № 2. P. 84–87.
  47. McEwan J.M. The sprouting reaction of stocks with single genes for red grain colour derived from hilgendorf 61 wheat // Cereal Res. Communications. 1980. V. 8. № 1. P. 261–264.
  48. Warner R.L., Kudrna D.A., Spaeth S.C., Jones S.S. Dormancy in white-grain mutations of Chinese Spring wheat (Triticum aestivum L.) // Seed Sci. Res. 2000. V. 10. № 1. P. 51–60. https://doi.org/10.1017/S0960258500000064
  49. Groos C., Gay G., Perretant M.R. et al. Study of the relationship between pre-harvest sprouting and grain color by quantitative trait loci analysis in a whitexred grain bread-wheat cross // Theor. Appl. Genet. 2002. V. 104. № 1. P. 39–47. https://doi.org/10.1007/s001220200004
  50. King R.W. Physiology of sprouting resistance // Pre-Harvest Field Sprouting in Cereals / Ed. Derera N.F. CRC Press Inc, Boca Raton, 1989. P. 27–60.
  51. Ji T., Penning B., Baik B.K. Pre-harvest sprouting resistance of soft winter wheat varieties and associated grain characteristics // J. Cereal Science. 2018. V. 83. P. 110–115. https://doi.org/10.1016/j.jcs.2018.08.006
  52. Gerjets T., Scholefield D., Foulkes M.J. et al. An analysis of dormancy, ABA responsiveness, after-ripening and pre-harvest sprouting in hexaploid wheat (Triticum aestivum L.) caryopses // J. Experim. Botany. 2010. V. 61. № 2. P. 597–607.
  53. He J., Zhang D., Chen X. et al. Identification of QTLs and a candidate gene for reducing pre-harvest sprouting in Aegilops tauschii–Triticum aestivum chromosome segment substitution lines // Int. J. Mol. Sci. 2021. V. 22. P. 3729. https://doi.org/10.3390/ijms22073729
  54. Lan X.J., Wei Y.M., Liu D.C. et al. Inheritance of seed dormancy in Tibetan semiwild wheat accession Q1028 // J. Applied Genet. 2005. V. 46. № 2. P. 133–138.
  55. Sun Y.W., Jones H.D., Yang Y. et al. Haplotype analysis of viviparous-1 gene in CIMMYT elite bread wheat germplasm // Euphytica. 2012. V. 186. P. 25–43. https://doi.org/10.1007/s10681-011-0482-2
  56. Баженов М.С., Дивашук М.Г., Пыльнев В.В. и др. Изучение образцов озимой тритикале на наличие хромосомных замещений и их связь с устойчивостью к прорастанию на корню // Изв. ТСХА. 2011. № 2. С. 20–26.
  57. Biddulph T.B., Plummer J.A., Setter T.L., Mares D.J. Seasonal conditions influence dormancy and preharvest sprouting tolerance of wheat (Triticum aestivum L.) in the field // Field Crops Res. 2008. V. 107. № 2. P. 116–128. https://doi.org/10.1016/j.fcr.2008.01.003
  58. Walker-Simmons M. Enhancement of ABA responsiveness in wheat embryos by high temperature // Plant Cell Environ. 1988. V. 11. № 8. P. 769–775. https://doi.org/10.1111/j.1365-3040.1988.tb01161.x
  59. Hagemann M.G., Ciha A.J. Evaluation of methods used in testing winter wheat susceptibility to preharvest sprouting // Crop Sci. 1984. V. 24. № 2. P. 249–254. https://doi.org/10.2135/cropsci1984.0011183X00240-0020010x
  60. Kulwal P.L., Mir R.R., Kumar S., Gupta P.K. QTL analysis and molecular breeding for seed dormancy and pre-harvest sprouting tolerance in bread wheat // J. Plant Biol. 2010. V. 37. № 1. P. 59–74.
  61. Perten H. Application of the falling number method for evaluating α-amylase activity // Cereal Chemistry. 1964. V. 41. № 3. P. 127–140.
  62. Hagberg S. A rapid method for determining alpha-amylase activity // Cereal Chem. 1960. V. 37. P. 218.
  63. Martinez S.A., Godoy J., Huang M. et al. Genome-wide association mapping for tolerance to pre-harvest sprouting and low falling numbers in wheat // Front. Plant Sci. 2018. V. 9. 141. https://doi.org/10.3389/fpls.2018.00141
  64. Lunn G.D., Major B.J., Kettlewell P.S., Scott R.K. Mechanisms leading to excess alpha-amylase activity in wheat (Triticum aestivum L.) grain in the U.K // J. Cereal Sci. 2001. V. 33. P. 313–329. https://doi.org/10.1006/jcrs.2001.0369
  65. Trethowan R.M. Evaluation and selection of bread wheat (Triticum aestivum L.) for preharvest sprouting tolerance // Aust. J. Agric. Res. 1995. V. 46. № 3. P. 463–474. https://doi.org/10.1071/AR9950463
  66. Olaerts H., Vandekerckhove L., Courtin C.M. A closer look at the bread making process and the quality of bread as a function of the degree of preharvest sprouting of wheat (Triticum aestivum) // J. Cereal Science. 2018. V. 80. P. 188–197. https://doi.org/10.1016/j.jcs.2018.03.004
  67. Kottearachchi N.S., Uchino N., Kato K., Miura H. Increased grain dormancy in white-grained wheat by introgression of preharvest sprouting tolerance QTLs // Euphytica. 2006. V. 152. P. 421–428. https://doi.org/10.1007/s10681-006-9231-3
  68. Gale M.D., Ainsworth C.C. The relationship between α-amylase species found in developing and germinating wheat grain // Biochem. Genet. 1984. V. 22. P. 1031–1036. https://doi.org/10.1007/bf00499629
  69. Zhang Q., Li C. Comparisons of copy number, genomic structure, and conserved motifs for α-amylase genes from barley, rice and wheat // Frontiers in Plant Sci. 2017. V. 8. 1727. https://doi.org/10.3389%2Ffpls.2017.01727
  70. Gale M.D., Law C.N., Chojecki A.J., Kempton R.A. Genetic control of a-amylase production in wheat // Theor. Appl. Genet. 1983. V. 64. P. 309–316. https://doi.org/10.1007/bf00274170
  71. Mrva K., Wallwork M., Mares D.J. α-Amylase and programmed cell death in aleurone of ripening wheat grains // J. Experim. Botany. 2006. V. 57. № 4. P. 877–885. https://doi.org/10.1093/jxb/erj072
  72. Laethauwer S.D., Riek J.D., Stals I. et al. α-Amylase gene expression during kernel development in relation to pre-harvest sprouting in wheat and triticale // Acta Physiol. Plant. 2013. V. 35. P. 2927–2938. https://doi.org/10.1007/s11738-013-1323-9
  73. van der Maarel M.J.E.C., van der Veen B., Uitdehaag J.C.M. et al. Properties and applications of starch-converting enzymes of the α-amylase family // J. Biotechnology. 2002. V. 94. № 2. P. 137–155. https://doi.org/10.1016/S0168-1656(01)00407-2
  74. Szafrańska A. Comparison of alpha-amylase activity of wheat flour estimated by traditional and modern techniques // Acta Agrophysica. 2014. V. 21. № 4. P. 493–505.
  75. Antoņenko K., Duma M., Kreicbergs V., Kunkulberga D. The influence of microelements selenium and copper on the rye malt amylase activity and flour technological properties // Agronomy Research. 2016. V. 14. № S2. P. 1261–1270.
  76. Newberry M., Zwart A.B., Whan A. et al. Does late maturity alpha-amylase impact wheat baking quality // Front Plant Sci. 2018. V. 9. № 1356. https://doi.org/10.3389/fpls.2018.01356
  77. Visvanathan R., Qader M., Jayathilake C. et al. Critical review on conventional spectroscopic α-amylase activity detection methods: Merits, demerits, and future prospects // J. Science of Food and Agriculture. 2020. V. 100. № 7. P. 2836–2847. https://doi.org/10.1002/jsfa.10315
  78. AACC I. The approved methods of analysis // Method 22–0201 measurement of alpha-amylase in plant and microbial materials using the Ceralpha method, 11th ed. St. Paul, MN: AACC International. https://doi.org/10.1094/AACCIntMethod-22-02.01
  79. Amylase Test. Instructions for Use. Sweden, 2021. www.phadebas.com.
  80. Mathewson P.R., Pomeranz Y. Detection of sprouted wheat by a rapid colormetric determination of alpha-amylase // J. Association of Oficial Analytical Chemists. 1977. V. 60. № 1. P. 16–20. https://doi.org/10.1093/jaoac/60.1.16
  81. Trethowan R.M., Pena R.J., Pfeiffer W.H. Evaluation of pre-harvest sprouting in triticale compared with wheat and rye using a line source rain gradient // Aust. J. Agric. Res. 1994. V. 45. № 1. P. 65–74. https://doi.org/10.1071/AR9940065
  82. Ichinose Y., Kuwabara T., Hakoyama S. Germination of wheat grains at various temperatures in relation to the activities of a-amylase and endoprotease // Plant Prod. Sci. 2002. V. 5. № 2. P. 110–116. https://doi.org/10.1626/pps.5.110
  83. Stanojeska M., Sokoloski B. Creating the correlation model at flour T-400 among Amylograph units and γ slope of Mixolab curve // J. Hygienic Engineering and Design. 2012. V. 1. P. 247–250.
  84. Wiwart M., Szafranska A., Wachowska U., Suchowilska E. Quality parameters and rheological dough properties of fifteen spelt (Triticum spelta L.) varieties cultivated today // Cereal Chem. 2017. V. 94. № 6. P. 1037–1044. https://doi.org/10.1094/CCHEM-05-17-0097-R
  85. Flintham J., Adlam R., Bassoi M. et al. Mapping genes for resistance to sprouting damage in wheat // Euphytica. 2002. V. 126. P. 39–45. https://doi.org/10.1023/A:1019632008244
  86. Cabral A.L., Jordan M.C., McCartney C.A. et al. Identification of candidate genes, regions and markers for pre-harvest sprouting resistance in wheat (Triticum aestivum L.) // BMC Plant Biol. 2014. V. 14. № 340. https://doi.org/10.1186/s12870-014-0340-1
  87. Fakthongphan J., Bai G., Amand P.S. et al. Identification of markers linked to genes for sprouting tolerance (independent of grain color) in hard white winter wheat (HWWW) // Theor. Appl. Genet. 2016. V. 129. P. 419–430. https://doi.org/10.1007/s00122-015-2636-4
  88. Gupta P.K., Balyan H.S., Sharma S., Kumar R. Genetics of yield, abiotic stress tolerance and biofortification in wheat (Triticum aestivum L.) // Theor. Appl. Genet. 2020. V. 133. P. 1569–1602. https://doi.org/10.1007/s00122-020-03583-3
  89. Tai L., Wang H.J., Xu X.J. et al. Pre-harvest sprouting in cereals: genetic and biochemical mechanisms // J. Experim. Botany. 2021. V. 72. № 8. P. 2857–2876. https://doi.org/10.1093/jxb/erab024
  90. Tanksley S.D. Mapping polygenes // Annu. Rev. Genet. 1993. V. 27. P. 205–233. https://doi.org/10.1146/annurev.ge.27.120193.001225
  91. Mares D., Mrva K., Cheong J. et al. A QTL located on chromosome 4A associated with dormancy in white- and red-grained wheats of diverse origin // Theor. Appl. Genet. 2005. V. 111. P. 1357–1364. https://doi.org/10.1007/s00122-005-0065-5
  92. Torada A., Ikeguchi S., Koike M. Mapping and validation of PCR-based markers associated with a major QTL for seed dormancy in wheat // Euphytica. 2005. V. 143. P. 251–255. https://doi.org/10.1007/s10681-005-7872-2
  93. Ogbonnaya F.C., Imtiaz M., Ye G. et al. Genetic and QTL analyses of seed dormancy and preharvest sprouting resistance in the wheat germplasm CN10955 // Theor. Appl. Genet. 2008. V. 116. P. 891–902. https://doi.org/10.1007/s00122-008-0712-8
  94. Torada A., Koike M., Ogawa T. et al. Causal gene for seed dormancy on wheat chromosome 4A encodes a map kinase kinase // Current Biology. 2016. V. 26. № 6. P. 782–787. https://doi.org/10.1016/j.cub.2016.01.063
  95. Hoecker U., Vasil I.K., McCarty D.R. Integrated control of seed maturation and germination programs by activator and repressor functions of Viviparous-1 of maize // Genes Devel. 1995. V. 9. P. 2459–2469. https://doi.org/10.1101/gad.9.20.2459
  96. Paek N.C., Lee B.M., Bai D.G., Smith J.D. Inhibition of germination gene expression by Viviparous-1 and ABA during maize kernel development // Mol. Cells. 1998. V. 8. P. 336–342.
  97. Wilkinson M.D., McKibbin R.S., Bailey P.C. et al. Use of comparative molecular genetics to study pre harvest sprouting in wheat // Euphytica. 2002. V. 126. P. 27–33. https://doi.org/10.1023%2FA%3A1019627807335
  98. Chang C., Zhang H.P., Feng J.M. et al. Identifying alleles of Viviparous-1B associated with pre-harvest sprouting in micro-core collections of Chinese wheat germplasm // Mol. Breeding. 2010. V. 25. P. 481–490. https://doi.org/10.1007%2Fs11032-009-9346-z
  99. Chang C., Zhang H.-P., Zhao Q.-X. et al. Rich allelic variations of Viviparous-1A and their associations with seed dormancy/pre-harvest sprouting of common wheat // Euphytica. 2011. V. 179. P. 343–353. https://doi.org/10.1007/s10681-011-0348-7
  100. Sun Y.W., Nie L.N, Ma Y.Z. et al. Cloning and functional analysis of Viviparous-1 promoter in wheat // Acta. Agronomica Sinica. 2011. V. 37. № 10. P. 1743–1751. https://doi.org/10.3724/SP.J.1006.2011.01743
  101. Flintham J.E. Different genetic components control coat-imposed and embryo-imposed dormancy in wheat // Seed Sci. Res. 2000. V. 10. № 1. P. 43–50. https://doi.org/10.1017/S0960258500000052
  102. Santos L.T., Pinto R.J.B., Franco F.A., Schuster I. Inheritance and potential use of grain color in the identification of genotypes resistant to pre-harvest sprouting in wheat // Crop Breed Appl. Biotechnol. 2010. V. 10. № 3. P. 218–224. https://doi.org/10.1590/S1984-70332010000300006
  103. Metzger R.J., Silbaugh B.A. Locations of genes for seed coat colour in hexaploid wheat, Triticum aestivum L. // Crop Science. 1970. V. 10. № 5. P. 495–496. https://doi.org/10.2135/cropsci1970.0011183X00100-0050012x
  104. Mares D., Himi E. The role of TaMYB10-A1 of wheat (Triticum aestivum L.) in determining grain coat colour and dormancy phenotype // Euphytica. 2021. V. 217. № 89. https://doi.org/10.1007/s10681-021-02826-8
  105. Nakamura S., Abe F., Kawahigashi H. et al. A wheat homolog of MOTHER OF FT AND TFL1 acts in the regulation of germination // Plant Cell. 2011. V. 23. № 9. P. 3215–3229. https://doi.org/10.1105/tpc.111.088492
  106. Liu S., Sehgal S.K., Li J. et al. Cloning and characterization of a critical regulator for pre-harvest sprouting in wheat // Genetics. 2013. V. 195. № 1. P. 263–273. https://doi.org/10.1534/genetics.113.152330
  107. Zhang Y., Miao X., Xia X., He Z. Cloning of seed dormancy genes (TaSdr) associated with tolerance to pre-harvest sprouting in common wheat and development of a functional marker // Theor. Appl. Genet. 2014. V. 127. P. 855–866. https://doi.org/10.1007/s00122-014-2262-6
  108. Zhang Y., Xia X., He Z. The seed dormancy allele TaSdr-A1a associated with pre-harvest sprouting tolerance is mainly present in Chinese wheat landraces // Theor. Appl. Genet. 2017. V. 130. P. 81–89. https://doi.org/10.1007/s00122-016-2793-0
  109. Roy J.K., Prasad M., Varshney R.K. Identification of a microsatellite on chromosomes 6B and a STS on 7D of bread wheat showing an association with pre-harvest sprouting tolerance // Theor. Appl. Genet. 1999. V. 99. P. 336–340.
  110. Yang Y., Zhao X.L., Xia L.Q. et al. Development and validation of a Viviparous-1 STS marker for pre-harvest sprouting tolerance in Chinese wheats // Theor. Appl. Genet. 2007. V. 115. P. 971–980. https://doi.org/10.1007/s00122-007-0624-z
  111. Yang Y., Zhang C.L., Liu S.X. et al. Characterization of the rich haplotypes of Viviparous-1A in Chinese wheats and development of a novel sequence-tagged site marker for pre-harvest sprouting resistance // Mol. Breed. 2014. V. 33. P. 75–88. https://doi.org/10.1007/s11032-013-9935-8
  112. Chen C.X., Cai S.B., Bai G.H. A major QTL controlling seed dormancy and pre- harvest sprouting resistance on chromosome 4A in a Chinese wheat landrace // Mol. Breed. 2007. V. 21. P. 351–358. https://doi.org/10.1007/s11032-007-9135-5
  113. Yang Y., Zhang C.L., Chen X.M. et al. Identification and validatation of molecular markers for PHS tolerance in red-grained spring wheat // J. Triticeae Crops. 2011. V. 31. № 1. P. 54–59.
  114. Yang Y., Zhao X.L., Zhang Y. et al. Evaluation and validation of four molecular markers associated with pre-harvest sprouting tolerance in Chinese wheats // Acta. Agronomica Sinica. 2008. V. 34. P. 17–24. https://doi.org/10.3724/SP.J.1006.2008.00017
  115. Liu S., Sehgal S.K., Li J. et al. Cloning and characterization of a critical regulator for pre-harvest sprouting in wheat // Genetics. 2013. V. 195. № 1. P. 263–273. https://doi.org/10.1534/genetics.113.152330
  116. Zhang Y., Xia X., He Z. The seed dormancy allele TaSdr-A1a associated with pre-harvest sprouting tolerance is mainly present in Chinese wheat landraces // Theor. Appl. Genet. 2017. V. 130. P. 81–89. https://doi.org/10.1007/s00122-016-2793-0
  117. Zhang H.P., Chang C., You G.X. et al. Identification of molecular markers associated with seed dormancy in mini core collections of Chinese wheat and landraces // Acta. Agronomica Sinica. 2010. V. 36. № 10. P. 1649–1656. https://doi.org/10.1016/S1875-2780(09)60077-8
  118. Wang Y., Wang X.L., Meng J.Y. et al. Characterization of Tamyb10 allelic variants and development of STS marker for pre-harvest sprouting resistance in Chinese bread wheat // Mol. Breed. 2016. V. 36. № 148. https://doi.org/10.1007/s11032-016-0573-9
  119. Xia L.Q., Yang Y., Ma Y.Z. et al. What can the Viviparous-1 gene tell us about wheat pre-harvest sprouting // Euphytica. 2009. V. 168. P. 385–394. https://doi.org/10.1007/s10681-009-9928-1
  120. Беспалова Л.А., Васильев А.В., Аблова И.Б. и др. Применение молекулярных маркеров в селекции пшеницы в Краснодарском НИИСХ им. П.П. Лукьяненко // Вавилов. журн. генетики и селекции. 2012. Т. 16. № 1. С. 37−43.
  121. Vanzetti L.S., Yerkovich N.Y., Chialvo E. et al. Genetic structure of Argentinean hexaploid wheat germplasm // Genet. Mol. Biol. 2013. V. 36. № 3. P. 391–399.
  122. Rasheed A., Wen W., Gao F. et al. Development and validation of KASP assays for functional genes underpinning key economic traits in wheat // Theor. Appl. Genet. 2016. V. 129. P. 1843–1860. https://doi.org/10.1007/s00122-016-2743-x
  123. Guo F.Z., Liang W.G., Fan Q.Q. et al. The distribution and evolution of allelic variation of Vp1B3 in Shandong Wheat // J. Triticeae Crops. 2009. V. 29. P. 575–578.
  124. Zhao B., Wan Y.X., Wang R. Screening of wheat cultivar resources with pre-harvest sprouting resistance // J. Anhui Agric. Sci. 2010. V. 38. P. 8900–8902.
  125. Miao X.L., Wang D.S., Xia L.Q. et al. Analysis on the mechanism of pre-harvest sprouting resistance in white-grain wheat // J. Triticeae Crops. 2011. V. 31. P. 741–746.
  126. Леонова И.Н. Молекулярные маркеры: использование в селекции зерновых культур для идентификации, интрогрессии и пирамидирования генов // Вавилов. журн. генетики и селекции. 2013. Т. 17. № 2. С. 314–325.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (83KB)
3.

Download (126KB)

Copyright (c) 2023 А.В. Федяева, Е.А. Салина, В.К. Шумный

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies