The Universal Euler Characteristic of V-Manifolds


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The Euler characteristic is the only additive topological invariant for spaces of certain sort, in particular, for manifolds with certain finiteness properties. A generalization of the notion of a manifold is the notion of a V-manifold. We discuss a universal additive topological invariant of V-manifolds, the universal Euler characteristic. It takes values in the ring freely generated (as a Z-module) by isomorphism classes of finite groups. We also consider the universal Euler characteristic on the class of locally closed equivariant unions of cells in equivariant CW-complexes. We show that it is a universal additive invariant satisfying a certain “induction relation.” We give Macdonald-type identities for the universal Euler characteristic for V-manifolds and for cell complexes of the described type.

Авторлар туралы

S. Gusein-Zade

Moscow State University, Faculty of Mechanics and Mathematics

Хат алмасуға жауапты Автор.
Email: sabir@mccme.ru
Ресей, Moscow

I. Luengo

ICMAT, Madrid, Spain Department of Algebra, Geometry, and Topology, Complutense University of Madrid; ICMAT

Email: sabir@mccme.ru
Испания, Madrid; Madrid

A. Melle-Hernández

Institute of Interdisciplinary Mathematics, Department of Algebra, Geometry, and Topology, Complutense University of Madrid

Email: sabir@mccme.ru
Испания, Madrid

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Pleiades Publishing, Ltd., 2018