The Universal Euler Characteristic of V-Manifolds
- Авторы: Gusein-Zade S.M.1, Luengo I.2,3, Melle-Hernández A.4
-
Учреждения:
- Moscow State University, Faculty of Mechanics and Mathematics
- ICMAT, Madrid, Spain Department of Algebra, Geometry, and Topology, Complutense University of Madrid
- ICMAT
- Institute of Interdisciplinary Mathematics, Department of Algebra, Geometry, and Topology, Complutense University of Madrid
- Выпуск: Том 52, № 4 (2018)
- Страницы: 297-307
- Раздел: Article
- URL: https://journals.rcsi.science/0016-2663/article/view/234548
- DOI: https://doi.org/10.1007/s10688-018-0239-y
- ID: 234548
Цитировать
Аннотация
The Euler characteristic is the only additive topological invariant for spaces of certain sort, in particular, for manifolds with certain finiteness properties. A generalization of the notion of a manifold is the notion of a V-manifold. We discuss a universal additive topological invariant of V-manifolds, the universal Euler characteristic. It takes values in the ring freely generated (as a Z-module) by isomorphism classes of finite groups. We also consider the universal Euler characteristic on the class of locally closed equivariant unions of cells in equivariant CW-complexes. We show that it is a universal additive invariant satisfying a certain “induction relation.” We give Macdonald-type identities for the universal Euler characteristic for V-manifolds and for cell complexes of the described type.
Об авторах
S. Gusein-Zade
Moscow State University, Faculty of Mechanics and Mathematics
Автор, ответственный за переписку.
Email: sabir@mccme.ru
Россия, Moscow
I. Luengo
ICMAT, Madrid, Spain Department of Algebra, Geometry, and Topology, Complutense University of Madrid; ICMAT
Email: sabir@mccme.ru
Испания, Madrid; Madrid
A. Melle-Hernández
Institute of Interdisciplinary Mathematics, Department of Algebra, Geometry, and Topology, Complutense University of Madrid
Email: sabir@mccme.ru
Испания, Madrid
Дополнительные файлы
