An analogue of the big q-Jacobi polynomials in the algebra of symmetric functions
- Авторлар: Olshanski G.I.1,2
-
Мекемелер:
- Institute for Information Transmission Problems of the Russian Academy of Sciences
- Skolkovo Institute of Science and Technology (Skoltech)
- Шығарылым: Том 51, № 3 (2017)
- Беттер: 204-220
- Бөлім: Article
- URL: https://journals.rcsi.science/0016-2663/article/view/234331
- DOI: https://doi.org/10.1007/s10688-017-0184-1
- ID: 234331
Дәйексөз келтіру
Аннотация
It is well known how to construct a system of symmetric orthogonal polynomials in an arbitrary finite number of variables from an arbitrary system of orthogonal polynomials on the real line. In the special case of the big q-Jacobi polynomials, the number of variables can be made infinite. As a result, in the algebra of symmetric functions, there arises an inhomogeneous basis whose elements are orthogonal with respect to some probability measure. This measure is defined on a certain space of infinite point configurations and hence determines a random point process.
Авторлар туралы
G. Olshanski
Institute for Information Transmission Problems of the Russian Academy of Sciences; Skolkovo Institute of Science and Technology (Skoltech)
Хат алмасуға жауапты Автор.
Email: olsh2007@gmail.com
Ресей, Moscow; Moscow
Қосымша файлдар
