An analogue of the big q-Jacobi polynomials in the algebra of symmetric functions


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

It is well known how to construct a system of symmetric orthogonal polynomials in an arbitrary finite number of variables from an arbitrary system of orthogonal polynomials on the real line. In the special case of the big q-Jacobi polynomials, the number of variables can be made infinite. As a result, in the algebra of symmetric functions, there arises an inhomogeneous basis whose elements are orthogonal with respect to some probability measure. This measure is defined on a certain space of infinite point configurations and hence determines a random point process.

Sobre autores

G. Olshanski

Institute for Information Transmission Problems of the Russian Academy of Sciences; Skolkovo Institute of Science and Technology (Skoltech)

Autor responsável pela correspondência
Email: olsh2007@gmail.com
Rússia, Moscow; Moscow

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Springer Science+Business Media, LLC, 2017