Integrable Crystals and Restriction to Levi Subgroups Via Generalized Slices in the Affine Grassmannian


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Let G be a connected reductive algebraic group over ℂ, and let ΛG+ be the monoid of dominant weights of G. We construct integrable crystals BG(λ), λ ∈ ΛG+, using the geometry of generalized transversal slices in the affine Grassmannian of the Langlands dual group of G. We also construct tensor product maps \(P{\lambda _1},{\lambda _2}:{B^G}({\lambda _2}) \to {B^G}({\lambda _1} + {\lambda _2}) \cup \{ 0\} \) in terms of multiplication in generalized transversal slices. Let LG be a Levi subgroup of G. We describe the functor ResLG: Rep(G) → Rep(L) of restriction to L in terms of the hyperbolic localization functors for generalized transversal slices.

Sobre autores

V. Krylov

Department of Mathematics, National Research University Higher School of Economics

Autor responsável pela correspondência
Email: kr-vas57@yandex.ru
Rússia, Moscow

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Springer Science+Business Media, LLC, part of Springer Nature, 2018