Integrable Crystals and Restriction to Levi Subgroups Via Generalized Slices in the Affine Grassmannian
- Авторлар: Krylov V.V.1
-
Мекемелер:
- Department of Mathematics, National Research University Higher School of Economics
- Шығарылым: Том 52, № 2 (2018)
- Беттер: 113-133
- Бөлім: Article
- URL: https://journals.rcsi.science/0016-2663/article/view/234453
- DOI: https://doi.org/10.1007/s10688-018-0217-4
- ID: 234453
Дәйексөз келтіру
Аннотация
Let G be a connected reductive algebraic group over ℂ, and let ΛG+ be the monoid of dominant weights of G. We construct integrable crystals BG(λ), λ ∈ ΛG+, using the geometry of generalized transversal slices in the affine Grassmannian of the Langlands dual group of G. We also construct tensor product maps \(P{\lambda _1},{\lambda _2}:{B^G}({\lambda _2}) \to {B^G}({\lambda _1} + {\lambda _2}) \cup \{ 0\} \) in terms of multiplication in generalized transversal slices. Let L ⊂ G be a Levi subgroup of G. We describe the functor ResLG: Rep(G) → Rep(L) of restriction to L in terms of the hyperbolic localization functors for generalized transversal slices.
Авторлар туралы
V. Krylov
Department of Mathematics, National Research University Higher School of Economics
Хат алмасуға жауапты Автор.
Email: kr-vas57@yandex.ru
Ресей, Moscow
Қосымша файлдар
