Logarithmic differential forms on varieties with singularities


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

In the article we introduce the notion of logarithmic differential forms with poles along a Cartier divisor given on a variety with singularities, discuss some properties of such forms, and describe highly efficient methods for computing the Poincaré series and generators of modules of logarithmic differential forms in various situations. We also examine several concrete examples by applying these methods to the study of divisors on varieties with singularities of many types, including quasi-homogeneous complete intersections, normal, determinantal, and rigid varieties, and so on.

Авторлар туралы

A. Aleksandrov

Institute of Control Sciences, Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: ag_aleksandrov@mail.ru
Ресей, Moscow

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Springer Science+Business Media, LLC, part of Springer Nature, 2017