Logarithmic differential forms on varieties with singularities


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

In the article we introduce the notion of logarithmic differential forms with poles along a Cartier divisor given on a variety with singularities, discuss some properties of such forms, and describe highly efficient methods for computing the Poincaré series and generators of modules of logarithmic differential forms in various situations. We also examine several concrete examples by applying these methods to the study of divisors on varieties with singularities of many types, including quasi-homogeneous complete intersections, normal, determinantal, and rigid varieties, and so on.

Sobre autores

A. Aleksandrov

Institute of Control Sciences, Russian Academy of Sciences

Autor responsável pela correspondência
Email: ag_aleksandrov@mail.ru
Rússia, Moscow

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Springer Science+Business Media, LLC, part of Springer Nature, 2017